题目内容
设x为非零实数,则p:|x+
|>2是q:|x|>1成立的( )
| 1 |
| x |
| A、充分不必要条件 |
| B、必要不充分条件 |
| C、充分必要条件 |
| D、既不充分也不必要条件 |
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:根据不等式的性质,利用充分条件和必要条件的定义进行判断即可得到结论.
解答:
解:若p成立,q不一定成立,如取x=0.5,
若反之若|x|>1成立,则:|x+
|=|x|+|
|≥2,
∵|x|>1,
∴|x+
|>2,
故p是q的必要不充分条件,
故选:B.
若反之若|x|>1成立,则:|x+
| 1 |
| x |
| 1 |
| x |
∵|x|>1,
∴|x+
| 1 |
| x |
故p是q的必要不充分条件,
故选:B.
点评:本题主要考查充分条件和必要条件的判断,根据不等式的性质是解决本题的关键,比较基础.
练习册系列答案
相关题目
若a>b>0,则下列不等式成立的是( )
A、a+b<2
| ||||
B、
| ||||
C、log
| ||||
| D、0.2a>0.2b |
若x∈Z,n∈N*,定义
=x(x+1)(x+2)…(x+n-1),则函数f(x)=
的奇偶性是( )
| M | n x |
| M | 11 x-5 |
| A、f(x)为偶函数,不是奇函数 |
| B、f(x)为奇函数,不是偶函数 |
| C、f(x)既是偶函数,又是奇函数 |
| D、f(x)既不是偶函数,又不是奇函数 |
已知全集U=Z,A={-1,0,1,2},B={x∈R|x2=3x-2},则A∩(∁UB)=( )
| A、{-1,2} |
| B、{-1,0} |
| C、{0,1} |
| D、{1,2} |
已知△ABC中,点D是BC的中点,过点D的直线分别交直线AB、AC于E、F两点,若
=λ
,
=μ
(λ>0,μ>0),则
+
的最小值为( )
| AB |
| AE |
| AC |
| AF |
| 1 |
| λ |
| 4 |
| μ |
A、
| ||
B、
| ||
C、
| ||
D、
|
已知集合A={x|(x-1)(x-5)<0},B={x|log2x≤2},则集合A∩B=( )
| A、{x|0<x<4} |
| B、{x|0<x<5} |
| C、{x|1<x≤4} |
| D、{x|4≤x<5} |
已知复数z满足
=1-z,则z的虚部为( )
| 1+z |
| i |
| A、-1 | B、-i | C、1 | D、i |