题目内容
4.已知直线l经过点P(0,0),Q(-1,$\sqrt{3}$),则直线l的倾斜角为( )| A. | 30° | B. | 60° | C. | 120° | D. | 150° |
分析 利用直线的倾斜角与斜率的关系即可得出.
解答 解:设直线l的倾斜角为θ,θ∈[0°,180°).
∴tanθ=$\frac{\sqrt{3}-0}{-1-0}$=-$\sqrt{3}$,
∴θ=120°,
故选:C.
点评 本题考查了直线的倾斜角与斜率的关系,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
19.已知△ABC的内角A,B,C的对边分别为a,b,c,若$\sqrt{3}$acosC+($\sqrt{3}$c-2b)cosA=0,且cosA•cosC=$\frac{\sqrt{3}}{4}$,则△ABC是( )
| A. | 直角三角形 | B. | 等腰三角形 | ||
| C. | 等边三角形 | D. | 等腰三角形或直角三角形 |
9.直线$\sqrt{3}$x-y+1=0的倾斜角的大小为( )
| A. | 30° | B. | 60° | C. | 120° | D. | 150° |
16.在等比{an}数列中,a2a6=16,a4+a8=8,则$\frac{{a}_{20}}{{a}_{10}}$=( )
| A. | 1 | B. | -3 | C. | 1或-3 | D. | -1或3 |