题目内容
15.已知等差数列{an}的前n项和为Sn,a3+a7=22,S4=24.(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{$\frac{1}{{S}_{n}}$}的前n项和为Tn,求证:Tn<$\frac{3}{4}$.
分析 (Ⅰ)通过设等差数列{an}的公差为d,联立a3+a7=22、S4=24计算可知首项及公差,进而可得结论;
(Ⅱ)通过(I)可知Sn=n(n+2),裂项可知$\frac{1}{{S}_{n}}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),进而并项相加、放缩即得结论.
解答 解:(Ⅰ)设等差数列{an}的公差为d,则由已知可得:
$\left\{\begin{array}{l}{2{a}_{1}+8d=22}\\{4{a}_{1}+6d=24}\end{array}\right.$,解得$\left\{\begin{array}{l}{{a}_{1}=3}\\{d=2}\end{array}\right.$,
∴an=3+2(n-1)=2n+1;
(Ⅱ)由(I)可知Sn=$\frac{n({a}_{1}+{a}_{n})}{2}$=$\frac{n(3+2n+1)}{2}$=n(n+2),
∴$\frac{1}{{S}_{n}}$=$\frac{1}{n(n+2)}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),
∴Tn=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{2}$-$\frac{1}{4}$+…+$\frac{1}{n}$-$\frac{1}{n+2}$)
=$\frac{1}{2}$(1+$\frac{1}{2}$-$\frac{1}{n+1}$-$\frac{1}{n+2}$)
=$\frac{3}{4}$-$\frac{2n+3}{2(n+1)(n+2)}$
<$\frac{3}{4}$.
点评 本题考查数列的通项及前n项和,考查裂项相消法,注意解题方法的积累,属于中档题.
| A. | -1≤a≤1 | B. | -2≤a≤2 | C. | 0≤a≤1 | D. | -1≤a≤0 |
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{11}{12}$ |
| A. | (2-2$\sqrt{2}$,2+2$\sqrt{2}$) | B. | (-1,+∞) | C. | (2-2$\sqrt{2}$,+∞) | D. | (-1,2+2$\sqrt{2}$) |
| A. | 30° | B. | 60° | C. | 120° | D. | 150° |