题目内容

19.已知△ABC的内角A,B,C的对边分别为a,b,c,若$\sqrt{3}$acosC+($\sqrt{3}$c-2b)cosA=0,且cosA•cosC=$\frac{\sqrt{3}}{4}$,则△ABC是(  )
A.直角三角形B.等腰三角形
C.等边三角形D.等腰三角形或直角三角形

分析 利用正弦定理化简已知等式可得$\sqrt{3}$sinAcosC+$\sqrt{3}$sinCcosA=2sinBcosA,由诱导公式及三角形内角和定理可得$\sqrt{3}$sinB=2sinBcosA,结合范围B∈(0,π),sinB>0,可求A,又cosA•cosC=$\frac{\sqrt{3}}{4}$,解得cosC=$\frac{1}{2}$,由范围C∈(0,π),可求C,从而求得B=$\frac{π}{2}$,即可得解.

解答 解:∵$\sqrt{3}$acosC+($\sqrt{3}$c-2b)cosA=0,
∴由正弦定理可得:$\sqrt{3}$sinAcosC+$\sqrt{3}$sinCcosA=2sinBcosA,
∴$\sqrt{3}$sin(A+C)=$\sqrt{3}$sinB=2sinBcosA,
∵B∈(0,π),sinB>0,
∴解得:cosA=$\frac{\sqrt{3}}{2}$,由A∈(0,π),可得:A=$\frac{π}{6}$,
又∵cosA•cosC=$\frac{\sqrt{3}}{4}$,解得:cosC=$\frac{1}{2}$,
∴由C∈(0,π),可得:C=$\frac{π}{3}$,
∴B=π-A-C=$\frac{π}{2}$.
故选:A.

点评 本题主要考查了正弦定理,三角形内角和定理,诱导公式,两角和的正弦函数公式,余弦函数的图象和性质的应用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网