题目内容

已知函数f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)

(Ⅰ)求f(x)的定义域;
(Ⅱ)若角α在第一象限且cosα=
3
5
,求f(α).
考点:三角函数中的恒等变换应用
专题:三角函数的求值
分析:(Ⅰ)由sin(x+
π
2
)≠0可解得x≠kπ-
π
2
(k∈Z),即可得解.
(Ⅱ)由已知条件及同角三角函数关系式可得sinα,从而由三角函数中的恒等变换的应用化简f(α)=2(cosα+sinα),从而代入即可求解.
解答: 解:(Ⅰ)由sin(x+
π
2
)≠0得x+
π
2
≠0,即x≠kπ-
π
2
(k∈Z),
故f(x)的定义域为{x∈R|x≠kπ-
π
2
,k∈Z}.
(Ⅱ)由已知条件得sinα=
1-cos2α
=
1-(
3
5
)2
=
4
5

从而f(α)=
1+
2
cos(2α-
π
4
)
sin(α+
π
2
)

=
1+
2
(cos2αcos
π
4
+sin2αsin
π
4
)
cosα

=
1+cos2α+sin2α
cosα

=
2cos2α+2sinαcosα
cosα

=2(cosα+sinα)
=
14
5
点评:本题主要考查了三角函数中的恒等变换应用,同角三角函数关系式的应用,属于基本知识的考查.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网