题目内容
1.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-2,-4),|$\overrightarrow{c}$|=$\sqrt{5}$,若($\overrightarrow{c}$-$\overrightarrow{b}$)•$\overrightarrow{a}$=$\frac{15}{2}$,则$\overrightarrow{a}$与$\overrightarrow{c}$的夹角为$\frac{2π}{3}$.分析 求出$\overrightarrow{a}•\overrightarrow{c}$,再计算cos<$\overrightarrow{a},\overrightarrow{c}$>即可得出答案.
解答 解:∵($\overrightarrow{c}$-$\overrightarrow{b}$)•$\overrightarrow{a}$=$\overrightarrow{a}•\overrightarrow{c}$-$\overrightarrow{a}•\overrightarrow{b}$=$\frac{15}{2}$,$\overrightarrow{a}•\overrightarrow{b}$=-2-8=-10,
∴$\overrightarrow{a}•\overrightarrow{c}$=$\frac{15}{2}$-10=-$\frac{5}{2}$,
∴cos<$\overrightarrow{a},\overrightarrow{c}$>=$\frac{\overrightarrow{a}•\overrightarrow{c}}{|\overrightarrow{a}||\overrightarrow{c}|}$=$\frac{-\frac{5}{2}}{\sqrt{5}×\sqrt{5}}$=-$\frac{1}{2}$,
由0≤<$\overrightarrow{a},\overrightarrow{c}$>≤π,
∴$\overrightarrow{a}$与$\overrightarrow{c}$的夹角为$\frac{2π}{3}$.
故答案为$\frac{2π}{3}$.
点评 本题考查了平面向量的数量积运算,属于中档题.
练习册系列答案
相关题目
15.若复数(a2-l)+(a-1)i(i为虚数单位)是纯虚数,则实数a=( )
| A. | ±1 | B. | -1 | C. | 0 | D. | 1 |