题目内容

如图所示,球面上有四个点P、A、B、C,如果PA,PB,PC两两互相垂直,且PA=PB=PC=a,该球的表面积是
 
考点:球的体积和表面积
专题:计算题,空间位置关系与距离
分析:PA、PB、PC可看作是正方体的一个顶点发出的三条棱,所以过空间四个点P、A、B、C的球面即为棱长为a的正方体的外接球,球的直径即是正方体的对角线,求出对角线长,即可求出球的表面积.
解答: 解:空间四个点P、A、B、C在同一球面上,PA、PB、PC两两垂直,且PA=PB=PC=a,
则PA、PB、PC可看作是正方体的一个顶点发出的三条棱,
所以过空间四个点P、A、B、C的球面即为棱长为a的正方体的外接球,球的直径即是正方体的对角线,长为
3
a,所以这个球面的面积S=4π(
3
2
a)2
=3πa2
故答案为:3πa2
点评:本题是基础题,考查球的内接体知识,球的表面积的求法,考查空间想象能力,计算能力,分析出,正方体的对角线就是球的直径是解好本题的关键所在.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网