题目内容

1.椭圆$\frac{x^2}{12}+\frac{y^2}{4}=1$的左、右焦点分别为F1,F2,过焦点F1的直线交该椭圆于A,B两点,若△ABF2的内切圆面积为π,A,B两点的坐标分别为(x1,y1),(x2,y2),则|y1-y2|的值为$\sqrt{6}$.

分析 由已知△ABF2内切圆半径r=1,从而求出△ABF2面积,再由ABF2面积=$\frac{1}{2}$|y1-y2|×2c,能求出|y1-y2|.

解答 解:∵椭圆$\frac{x^2}{12}+\frac{y^2}{4}=1$的左右焦点分别为F1,F2a=2$\sqrt{3}$,b=2,c=2$\sqrt{2}$,
过焦点F1的直线交椭圆于A(x1,y1),B(x2,y2)两点,
△ABF2的内切圆的面积为π,
∴△ABF2内切圆半径r=1.
△ABF2面积S=$\frac{1}{2}$×1×(AB+AF2+BF2)=2a=4$\sqrt{3}$,
∴ABF2面积S=$\frac{1}{2}$|y1-y2|×2c=$\frac{1}{2}$|y1-y2|×2×2$\sqrt{2}$=4$\sqrt{3}$,
∴|y1-y2|=$\sqrt{6}$.
故答案为:$\sqrt{6}$.

点评 本题给出椭圆经过左焦点F1的弦AB,在已知△ABF2的内切圆的面积情况下,求A、B两点的纵坐标之差.着重考查了椭圆的定义、三角形内切圆的性质和三角形的面积公式等知识,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网