题目内容

2.已知离散型随机变量X的分布列如下:
X012
Pa4a5a
则均值E(X)与方差D(X)分别为(  )
A.1.4,0.2B.0.44,1.4C.1.4,0.44D.0.44,0.2

分析 由离散型随机变量X的分布列的性质求出a=0.1,由此能求出E(X)和D(X).

解答 解:由离散型随机变量X的分布列的性质得:
a+4a+5a=1,
解得a=0.1,
∴E(X)=0×0.1+1×0.4+2×0.5=1.4,
D(X)=(0-1.4)2×0.1+(1-1.4)2×0.4+(2-1.4)2×0.5=0.44.
故选:C.

点评 本题考查离散型随机变量的数学期望和方差的求法,是基础题,注意离散型随机变量的分布列的性质的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网