题目内容

7.已知非空集合A={x|2a+1≤x≤3a-5},B={x|3≤x≤22},求使A⊆B成立的所有实数a组成的集合.

分析 由A={x|2a+1≤x≤3a-5},B={x|3≤x≤22},且A⊆B,知$\left\{\begin{array}{l}{2a+1≥3}\\{3a-5≤22}\\{2a+1≤3a-5}\end{array}\right.$,由此能求出a的取值范围.

解答 解:∵A={x|2a+1≤x≤3a-5},B={x|3≤x≤22},且A⊆B,
∴$\left\{\begin{array}{l}{2a+1≥3}\\{3a-5≤22}\\{2a+1≤3a-5}\end{array}\right.$,
解得6≤a≤9.
∴a的取值范围是[6,9].

点评 本题考查集合的交、并、补集的混合运算,是基础题.解题时要认真审题,仔细解答.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网