题目内容
13.已知△ABC的外接圆半径为1,圆心为O,且$\overrightarrow{OA}$$+\overrightarrow{OB}$$+\sqrt{2}$$\overrightarrow{OC}$=0,则△ABC的面积为( )| A. | 1+$\sqrt{2}$ | B. | $\frac{1}{2}$+$\sqrt{2}$ | C. | 1+$\frac{\sqrt{2}}{2}$ | D. | $\frac{1}{2}+\frac{\sqrt{2}}{2}$ |
分析 由条件得$\overrightarrow{OA}+\overrightarrow{OB}=-\sqrt{2}\overrightarrow{OC}$.两边平方计算$\overrightarrow{OA}•\overrightarrow{OB}$,得出∠AOB.从而得出∠AOC,∠BOC,分别计算三个小三角形的面积即可.
解答
解:∵△ABC的外接圆半径为1,圆心为O,
∴OA=OB=OC=1.
∵$\overrightarrow{OA}$$+\overrightarrow{OB}$$+\sqrt{2}$$\overrightarrow{OC}$=$\overrightarrow{0}$,
∴$\overrightarrow{OA}+\overrightarrow{OB}=-\sqrt{2}\overrightarrow{OC}$.
∴${\overrightarrow{OA}}^{2}+{\overrightarrow{OB}}^{2}+2\overrightarrow{OA}•\overrightarrow{OB}=2{\overrightarrow{OC}}^{2}$,即1+1+2$\overrightarrow{OA}•\overrightarrow{OB}$=2.
∴$\overrightarrow{OA}•\overrightarrow{OB}=0$.
∴$\overrightarrow{OA}⊥\overrightarrow{OB}$,即∠AOB=90°,
∴∠AOC=∠BOC=135°,
∴S△ABC=S△AOB+S△AOC+S△BOC=$\frac{1}{2}×1×1×sin90°$+$\frac{1}{2}×1×1×sin135°$+$\frac{1}{2}×1×1×sin135°$=$\frac{1}{2}+\frac{\sqrt{2}}{2}$.
故选D.
点评 本题考查了平面向量在几何中的应用,属于中档题.
| A. | 相交 | B. | 内切 | C. | 相离 | D. | 外切 |
| A. | $\frac{\sqrt{3}}{3}$R | B. | $\frac{1}{3}$πR | C. | $\frac{1}{2}$πR | D. | $\frac{2}{3}$πR |