题目内容

E、F、G、H分别是空间四边形ABCD的各边AB、BC、CD、DA的中点,若对角线BD=2,AC=4,则EG2+HF2的值为
 
考点:点、线、面间的距离计算
专题:空间位置关系与距离
分析:依次连接EF、FG、GH、HE,由已知得四边形EFGH为边长为1、2的平行四边形,由此能求出结果.
解答: 解:依次连接EF、FG、GH、HE
∵E是AB中点,H是AD中点,∴EH∥BD,且EH=BD=1,
同理:FG∥BD,FG=BD=1,∴EH∥FG,EH=FG,
同理,EF∥HG,EF=HG,
∴四边形EFGH为边长为1、2的平行四边形,
设∠EHG=θ,那么∠HEF=180°-θ,
在△EHG中,由余弦定理有:
EG2=EH2+HG2-2×EH×HG×cosθ=1+4-4cosθ=5-4cosθ,
在△EFH中,由余弦定理有:
FH2=EF2+EH2-2×EF×EH×cos(180°-θ)=4+1-4cos(180°-θ)=5+4cosθ,
上述两式相加,得到:
EG2+FH2=5-4cosθ+5+4cosθ=10.
故答案为:10.
点评:本题考查两边平方和的求法,是中档题,解题时要注意余弦定理的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网