题目内容

17.求值化简:
(1)$\frac{{1+\frac{1}{2}lg9-lg240}}{{1-\frac{2}{3}lg27+lg\frac{36}{5}}}$+1
(2)$\frac{{{{({a^{\frac{2}{3}}}•{b^{-1}})}^{-\frac{1}{2}}}•{a^{\frac{1}{2}}}•{b^{\frac{1}{3}}}}}{{\root{6}{{a•{b^5}}}}}$.

分析 (1)利用对数的运算性质即可得出.
(2)利用指数的运算性质即可得出.

解答 解:(1)原式=$\frac{1+lg\frac{3}{240}}{1-lg9+lg\frac{36}{5}}$+1=$\frac{lg\frac{1}{8}}{lg(\frac{36}{5}×10×\frac{1}{9})}$+1=-1+1=0.
(2)原式=$\frac{{a}^{-\frac{1}{3}+\frac{1}{2}}•{b}^{\frac{1}{2}+\frac{1}{3}}}{{a}^{\frac{1}{6}}{b}^{\frac{5}{6}}}$=a0b0=1.

点评 本题考查了指数幂与对数的运算性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网