题目内容
用数学归纳法证明C+C+…+C>n(n≥n0且n0∈N*),则n的最小值为( )
A.1 B.2 C.3 D.4
B
在空间直角坐标系Oxyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,).若S1,S2,S3分别为三棱锥DABC在xOy,yOz,zOx坐标平面上的正投影图形的面积,则( )
(A)S1=S2=S3 (B)S2=S1且S2≠S3
(C)S3=S1且S3≠S2 (D)S3=S2且S3≠S1
观察下列数表的规律:
图K372
则从数2009到2010的箭头方向是( )
A.→ B.↑
C.← D.↓
已知三棱锥S ABC的三视图如图K381所示.在原三棱锥中给出下列结论:
①BC⊥平面SAC;②平面SBC⊥平面SAB;③SB⊥AC.
其中,正确的结论是________(填序号).
用数学归纳法证明“1+2+3+…+n+…+3+2+1=n2(n∈N*)”时,从n=k到n=k+1时,等式左边应添加的代数式是________.
设数列{an}的前n项和为Sn,且S-2Sn-anSn+1=0,n=1,2,3,….
(1)求a1,a2,a3;
(2)求Sn的表达式.
已知平面α∥平面β,直线a⊂平面α,给出下列说法:
①a与β内的所有直线平行;
②a与β内无数条直线平行;
③a与β内的任意一条直线都不垂直.
其中说法正确的序号是________.
如图K40?7所示,正三棱柱ABC ? A1B1C1的各棱长均为2,其主视图如图所示,则此三棱柱左视图的面积为( )
A.2 B.4 C. D.2
图K40?7
如图K437所示,在正三棱锥A BCD中,∠BAC=30°,AB=a,平行于AD,BC的截面EFGH分别交AB,BD,DC,CA于E,F,G,H.
(1)判定四边形EFGH的形状,并说明理由.
(2)设P是棱AD上的点,当AP为何值时,平面PBC⊥平面EFGH?请给出证明.