题目内容

11.求下列函数的定义域:
(1)y=$\sqrt{sin(cosx)}$;
(2)y=$\sqrt{1-2cosx}$+lg(2sinx-1).

分析 (1)由sin(cosx)≥0得:0≤cosx≤1,解得x的范围,可得函数的定义域;
(2)由$\left\{\begin{array}{l}1-2cosx≥0\\ 2sinx-1>0\end{array}\right.$得:$\left\{\begin{array}{l}cosx≤\frac{1}{2}\\ sinx>\frac{1}{2}\end{array}\right.$,解得x的范围,可得函数的定义域;

解答 解:(1)由sin(cosx)≥0得:0≤cosx≤1,
故x∈[2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$],(k∈Z),
故函数y=$\sqrt{sin(cosx)}$的定义域为[2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$],(k∈Z);
(2)由$\left\{\begin{array}{l}1-2cosx≥0\\ 2sinx-1>0\end{array}\right.$得:$\left\{\begin{array}{l}cosx≤\frac{1}{2}\\ sinx>\frac{1}{2}\end{array}\right.$,
解得:x∈[$\frac{π}{3}$+2kπ,$\frac{5π}{6}$+2kπ],(k∈Z),
故函数y=$\sqrt{1-2cosx}$+lg(2sinx-1)的定义域为[$\frac{π}{3}$+2kπ,$\frac{5π}{6}$+2kπ],(k∈Z).

点评 本题考查的知识点是函数的定义域,三角函数的图象和性质,难度中档.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网