题目内容

椭圆
x2
a2
+
y2
b2
=1(a>b>0)的一个焦点为F1,若椭圆上存在一个点P,满足以椭圆短轴为直径的圆与线段PF1相切于该线段的中点,则椭圆的离心率为
 
考点:椭圆的应用
专题:综合题,圆锥曲线的定义、性质与方程
分析:设以椭圆的短轴为直径的圆与线段PF1相切于点M,连结OM、PF2,利用三角形中位线定理与圆的切线的性质,证出PF1⊥PF2且|PF2|=2b,然后在Rt△PF1F2中利用勾股定理算出|PF1|.根据椭圆的定义,得|PF1|+|PF2|=2a,从而建立关于a、b、c的等式,解出b=
2
3
a,c=
5
3
a,进而可得椭圆的离心率的大小.
解答: 解:设以椭圆的短轴为直径的圆与线段PF1相切于点M,连结OM、PF2
∵M、O分别为PF1、F1F2的中点,
∴MO∥PF2,且|PF2|=2|MO|=2b,
又∵线段PF1与圆O相切于点M,可得OM⊥PF1
∴PF1⊥PF2
∴|PF1|=
4c2-4b2
=2
c2-b2

∴|PF1|+|PF2|=2
c2-b2
+2b=2a,
化简得2ab=a2-c2+2b2=3b2
∴b=
2
3
a,c=
5
3
a,
∴离心率为e=
c
a
=
5
3

故答案为:
5
3
点评:本题考查了三角形的中位线定理、圆的切线的性质、椭圆的定义与简单几何性质等知识,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网