题目内容
2.已知函数f(x)=x|x-2|(Ⅰ)写出不等式f(x)>0的解集;
(Ⅱ)解不等式f(x)<x.
分析 (Ⅰ)根据|x-2|≥0,求出不等式的解集即可;(Ⅱ)通过讨论x的范围,得到关于x的不等式组,解出即可.
解答 解:(Ⅰ)∵|x-2|≥0,
故f(x)>0的解集是:{x|x>0且x≠2};
(Ⅱ)由x|x-2|<x,
得:$\left\{\begin{array}{l}{x>0}\\{|x-2|<1}\end{array}\right.$,或$\left\{\begin{array}{l}{x<0}\\{|x-2|>1}\end{array}\right.$,
解得:1<x<3,或x<0,
故不等式的解集是{x|1<x<3或x<0}.
点评 本题考查了解绝对值不等式问题,考查分类讨论思想,是一道基础题.
练习册系列答案
相关题目
7.要得到函数y=cos(2x-$\frac{π}{6}$)的图象,只需将函数y=sin2x的图象( )
| A. | 向左平移$\frac{π}{12}$个单位 | B. | 向左平移$\frac{π}{6}$个单位 | ||
| C. | 向右平移$\frac{π}{12}$个单位 | D. | 向右平移$\frac{π}{6}$个单位 |