题目内容

20.如图,在三棱柱ABC-A1B1C1中,M为A1C1的中点,若$\overrightarrow{AB}=\vec a$,$\overrightarrow{BC}=\vec b$,$\overrightarrow{A{A_1}}=\vec c$,则$\overrightarrow{BM}$可表示为(  )
A.$-\frac{1}{2}\vec a+\frac{1}{2}\vec b+\vec c$B.$\frac{1}{2}\vec a+\frac{1}{2}\vec b+\vec c$C.$-\frac{1}{2}\vec a-\frac{1}{2}\vec b+\vec c$D.$\frac{1}{2}\vec a-\frac{1}{2}\vec b+\vec c$

分析 利用空间向量的线性运算法则与向量相等的定义,用$\overrightarrow{AB}$、$\overrightarrow{BC}$和$\overrightarrow{{AA}_{1}}$表示出$\overrightarrow{BM}$即可.

解答 解:取AC的中点N,连接BN、MN,如图所示;

∵M为A1C1的中点,
$\overrightarrow{AB}=\vec a$,$\overrightarrow{BC}=\vec b$,$\overrightarrow{A{A_1}}=\vec c$,
∴$\overrightarrow{NM}$=$\overrightarrow{{AA}_{1}}$=$\overrightarrow{c}$,
$\overrightarrow{BN}$=$\frac{1}{2}$($\overrightarrow{BA}$+$\overrightarrow{BC}$)=$\frac{1}{2}$(-$\overrightarrow{AB}$+$\overrightarrow{BC}$)=-$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$
∴$\overrightarrow{BM}$=$\overrightarrow{BN}$+$\overrightarrow{NM}$=(-$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$)+$\overrightarrow{c}$=-$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$+$\overrightarrow{c}$.
故选:A.

点评 本题考查了空间向量的线性运算与向量相等的应用问题,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网