ÌâÄ¿ÄÚÈÝ
12£®Ä³ÊÐÒ»¸ßÖжþÄê¼¶ÔÚÆÚÖп¼ÊÔºó½øÐÐÁËÑÐѧ»î¶¯£¬ÂÃÐÐÉçÍÆ³ö6ÌõÑÐѧ·Ïß--A£ºÀúÊ·£¬B£ºÈËÎÄ£¬C£ºÊ«¸è£¬D£º¿Æ¼¼£¬E£ºÕþ·ç£¬F£ºÌ½ÃØ£®£¨¢ñ£©¼ÙÉèÿÌõÏß·±»Ñ¡ÖеĿÉÄÜÐÔÏàͬ£¬Èô´ÓÉÏÊö6ÌõÏß·ÖÐËæ»úÑ¡Ôñ4ÌõÏß·½øÐÐÑÐѧ£®ÇóÀúÊ·Óë¿Æ¼¼Á½ÌõÏß·¶¼±»Ñ¡ÖеĸÅÂÊ£»
£¨¢ò£©ÑÐѧ½áÊøºó£¬Ñ§Ð£´Ó²Î¼ÓÑÐѧµÄËùÓÐѧÉúÖУ¬Ëæ»ú³éÈ¡ÁË100ÃûѧÉú²Î¼Ó¶Ô±¾´ÎÑÐѧÂúÒâ¶ÈµÄµ÷²é£¬ÂúÒâ¶ÈµÃ·ÖµÄͳ¼Æ½á¹ûÈçÏÂ±í£º
| ÂúÒâ¶ÈµÃ·Ö | [0£¬50£© | [50£¬60£© | [60£¬70£© | [70£¬80£© | [80£¬90£© | [90£¬100] |
| ÈËÊý | 0 | 2 | 9 | 26 | 52 | 11 |
·ÖÎö £¨1£©Ê¹ÓÃÁоٷ¨Çó³ö¸ÅÂÊ£»£¨2£©Ê¹ÓÃ×éÖÐÖµ´úÌæ±¾×鯽¾ù·Ö£¬¼ÆËã¼ÓȨƽ¾ùÊý£®
½â´ð ½â£º£¨1£©´Ó6ÌõÑÐѧ·ÏßËæ»úÑ¡Ôñ4ÌõµÄ»ù±¾Ê¼þ¹²ÓÐ15ÖÖ£¬ËüÃÇ·Ö±ðÊÇ£¨ABCD£©£¬£¨ABCE£©£¬£¨ABCF£©£¬£¨ABDE£©£¬£¨ABDF£©£¬£¨ABEF£©£¬£¨ACDE£©£¬£¨ACDF£©£¬£¨ACEF£©£¬£¨ADEF£©£¬£¨BCDE£©£¬
£¨BCDF£©£¬£¨BCEF£©£¬£¨BDEF£©£¬£¨CDEF£©£¬ÇÒËüÃÇ·¢ÉúµÄ»ú»á¾ùµÈ£®ÆäÖÐÀúÊ·ºÍ¿Æ¼¼¶¼±»Ñ¡ÖеĸÅÂʹ²ÓÐ6ÖÖ£¬ËûÃÇÊÇ£¨ABCD£©£¬£¨ABDE£©£¬£¨ACDE£©£¬£¨ACDF£©£¬£¨ADEF£©£¬£¨ABDF£©£®
¡àÀúÊ·Óë¿Æ¼¼Á½ÌõÏß·¶¼±»Ñ¡ÖеĸÅÂÊΪ$\frac{6}{15}$=$\frac{2}{5}$£®
£¨2£©$\overline{x}$=$\frac{1}{100}$£¨55¡Á2+65¡Á9+75¡Á26+85¡Á52+95¡Á11£©=81.1
¡àѧÉú¶Ô±¾´ÎÑÐѧÂúÒâ¶ÈµÄƽ¾ùµÃ·ÖÊÇ81.1£®
µãÆÀ ±¾Ì⿼²éÁ˹ŵä¸ÅÐ͵ĸÅÂʼÆË㣬ÓÃÑù±¾¹À¼Æ×ÜÌåµÄͳ¼ÆË¼Ï룬ÊÇ»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
20£®ÉèË«ÇúÏßµÄÖÐÐÄÔÚԵ㣬½¹µãÔÚxÖáÉÏ£¬ÀëÐÄÂÊeΪ$\sqrt{5}$£¬Ôò¸ÃË«ÇúÏßµÄÁ½Ìõ½¥½üÏß·½³ÌΪ£¨¡¡¡¡£©
| A£® | y=¡À2x | B£® | y=¡À$\frac{1}{2}x$ | C£® | y=¡À4x | D£® | y=¡Àx |
17£®°Ñ5ÕÅ·Ö±ðдÓÐÊý×Ö1£¬2£¬3£¬4£¬5µÄ¿¨Æ¬»ìºÏ£¬ÔÙ½«ÆäÈÎÒâÅųÉÒ»ÐУ¬ÔòµÃµ½µÄÊýÄܱ»2»ò5Õû³ýµÄ¸ÅÂÊÊÇ£¨¡¡¡¡£©
| A£® | 0.2 | B£® | 0.4 | C£® | 0.6 | D£® | 0.8 |
1£®ÈôÅ×ÎïÏßC1£ºy=$\frac{1}{4}$x2µÄ½¹µãFµ½Ë«ÇúÏßC2£º$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄÒ»Ìõ½¥½üÏߵľàÀëΪ$\frac{\sqrt{3}}{2}$£¬Å×ÎïÏßC1Éϵ͝µãPµ½Ë«ÇúÏßC2µÄÒ»¸ö½¹µãµÄ¾àÀëÓëµ½Ö±Ïßy=-1µÄ¾àÀëÖ®ºÍµÄ×îСʱΪ$\sqrt{5}$£¬ÔòË«ÇúÏßC2µÄ·½³ÌΪ£¨¡¡¡¡£©
| A£® | $\frac{{x}^{2}}{3}$-y2=1 | B£® | x2-$\frac{{y}^{2}}{3}$=1 | C£® | $\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{2}$=1 | D£® | $\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{3}$=1 |