题目内容

10.定义运算$|\begin{array}{l}{a}&{c}\\{b}&{d}\end{array}|$=ad-bc,复数z满足$|\begin{array}{l}{z}&{i}\\{1}&{i}\end{array}|$=1+i,$\overline{z}$为z的共轭复数,则$\overline{z}$=2+i.

分析 由$|\begin{array}{l}{z}&{i}\\{1}&{i}\end{array}|$=zi-i=1+i,化简再利用共轭复数的定义即可得出.

解答 解:复数z满足$|\begin{array}{l}{z}&{i}\\{1}&{i}\end{array}|$=zi-i=1+i,∴z=$\frac{1+2i}{i}$=$\frac{i(2-i)}{i}$=2-i
$\overline{z}$=2+i.
故答案为:2+i.

点评 本题考查了行列式的性质、复数的运算法则、共轭复数的定义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网