题目内容

已知函数f(x)=2sin(2ωx+
π
6
)+1(其中0<ω<1),若点(-
π
6
,1)是函数f(x)图象的一个对称中心,
(1)试求ω的值;
(2)先列表,再作出函数f(x)在区间x∈[-π,π]上的图象.
考点:由y=Asin(ωx+φ)的部分图象确定其解析式,五点法作函数y=Asin(ωx+φ)的图象
专题:三角函数的图像与性质
分析:(1)由已知可得-
ωπ
3
+
π
6
=kπ,k∈Z
,从而可解得ω的值.
(2)列表,描点,连线,由五点法作函数y=Asin(ωx+φ)的图象即可.
解答: 解:f(x)=2sin(2ωx+
π
6
)+1

(1)∵点(-
π
6
,1)
是函数f(x)图象的一个对称中心,
-
ωπ
3
+
π
6
=kπ,k∈Z

ω=-3k+
1
2

∵0<ω<1
∴k=0,ω=
1
2
…(6分)
(2)由(1)知f(x)=2sin(x+
π
6
)+1
,x∈[-π,π]
列表如下:
x+
π
6
-
6
-
π
2
0
π
2
π
6
x-
3
-
π
6
π
3
6
π
y0-11310
…(9分)(注意一定要列表)

则函数f(x)在区间x∈[-π,π]上的图象如图所示.…(12分)
点评:本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,五点法作函数y=Asin(ωx+φ)的图象,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网