题目内容
若集合A={x|0≤x+2≤5},B={x|x<-1或x>4},则A∩B等于( )
| A、{x|x≤3或x>4} |
| B、{x|-1<x≤3} |
| C、{x|3≤x<4} |
| D、{x|-2≤x<-1} |
考点:交集及其运算
专题:集合
分析:求解一次不等式化简集合A,然后直接利用交集运算求解.
解答:
解:∵A={x|0≤x+2≤5}={x|-2≤x≤3},
B={x|x<-1或x>4},
则A∩B={x|-2≤x≤3}∩{x|x<-1或x>4}={x|-2≤x<-1}.
故选:D.
B={x|x<-1或x>4},
则A∩B={x|-2≤x≤3}∩{x|x<-1或x>4}={x|-2≤x<-1}.
故选:D.
点评:本题考查了交集及其运算,是基础的计算题.
练习册系列答案
相关题目
已知函数f(x)=
+
-1其定义域是( )
| 1-x |
| x+3 |
| A、(-1,3) |
| B、[-1,3] |
| C、(-3,1) |
| D、[-3,1] |
方程x3-7x2+16x-12=0的实根的个数( )
| A、3 | B、2 | C、1 | D、0 |
设函数y=f(x)是定义在R上以1为周期的函数,若g(x)=f(x)-2x在区间[2,3]上的值域为[-2,6],则函数g(x)在[-2012,2012]上的值域为( )
| A、[-2,6] |
| B、[-4030,4024] |
| C、[-4020,4034] |
| D、[-4028,4016] |
已知函数f(x)定义域为[-1,4],则f(3x-1)的定义域为( )
| A、[4,19] | ||
B、[
| ||
C、[0,
| ||
D、[
|
已知直线x+y=a与圆x2+y2=9交于两点A、B,且|
+
|=|
-
|,其中O为坐标原点,则实数a的值为( )
| OA |
| OB |
| OA |
| OB |
| A、3 | ||||
| B、-3 | ||||
| C、±3 | ||||
D、±
|
已知椭圆
+
=1(a>b>0),F1,F2为左、右焦点,A1、A2、B1、B2分别是其左、右、上、下顶点,直线B1F2交直线B2A2于P点,若∠B1PA2为直角,则此椭圆的离心率为( )
| x2 |
| a2 |
| y2 |
| b2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
分式方程
=
的解是( )
| 5 |
| x-2 |
| 3 |
| x |
| A、x=3 | ||
| B、x=-3 | ||
C、x=
| ||
D、x=-
|