题目内容

设正数数列{an}的前n项和Sn满足Sn=
1
4
(an+1)2
(1)求证:an=2n-1;
(2)设bn=
1
anan+1
,记数列{bn}的前n项和为Tn,求Tn
考点:数列的求和
专题:等差数列与等比数列
分析:(1)由Sn=
1
4
(an+1)2,当n≥2时,Sn=
1
4
(an-1+1)2
,可得an=Sn-Sn-1,化为(an+an-1)(an-an-1-2)=0,由于数列{an}是正数数列,可得an-an-1=2.利用等差数列的通项公式即可得出.
(2)bn=
1
anan+1
=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)
.利用“裂项求和”即可得出.
解答: (1)证明:∵Sn=
1
4
(an+1)2,∴当n≥2时,Sn=
1
4
(an-1+1)2

∴an=Sn-Sn-1=
1
4
(an+1)2
-
1
4
(an-1+1)2

化为(an+an-1)(an-an-1-2)=0,
∵数列{an}是正数数列,
∴an-an-1=2.
当n=1时,a1=S1=
1
4
(a1+1)2
,解得a1=1.
∴数列{an}是等差数列,
∴an=1+2(n-1)=2n-1.
(2)bn=
1
anan+1
=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)

∴数列{bn}的前n项和Tn=
1
2
[(1-
1
3
)+(
1
3
-
1
5
)
+…+(
1
2n-1
-
1
2n+1
)]

=
1
2
(1-
1
2n+1
)

=
n
2n+1
点评:本题考查了递推式的应用、等差数列的定义及其通项公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网