题目内容
设正数数列{an}的前n项和Sn满足Sn=
(an+1)2,
(1)求证:an=2n-1;
(2)设bn=
,记数列{bn}的前n项和为Tn,求Tn.
| 1 |
| 4 |
(1)求证:an=2n-1;
(2)设bn=
| 1 |
| an•an+1 |
考点:数列的求和
专题:等差数列与等比数列
分析:(1)由Sn=
(an+1)2,当n≥2时,Sn=
(an-1+1)2,可得an=Sn-Sn-1,化为(an+an-1)(an-an-1-2)=0,由于数列{an}是正数数列,可得an-an-1=2.利用等差数列的通项公式即可得出.
(2)bn=
=
=
(
-
).利用“裂项求和”即可得出.
| 1 |
| 4 |
| 1 |
| 4 |
(2)bn=
| 1 |
| an•an+1 |
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
解答:
(1)证明:∵Sn=
(an+1)2,∴当n≥2时,Sn=
(an-1+1)2,
∴an=Sn-Sn-1=
(an+1)2-
(an-1+1)2,
化为(an+an-1)(an-an-1-2)=0,
∵数列{an}是正数数列,
∴an-an-1=2.
当n=1时,a1=S1=
(a1+1)2,解得a1=1.
∴数列{an}是等差数列,
∴an=1+2(n-1)=2n-1.
(2)bn=
=
=
(
-
).
∴数列{bn}的前n项和Tn=
[(1-
)+(
-
)+…+(
-
)]
=
(1-
)
=
.
| 1 |
| 4 |
| 1 |
| 4 |
∴an=Sn-Sn-1=
| 1 |
| 4 |
| 1 |
| 4 |
化为(an+an-1)(an-an-1-2)=0,
∵数列{an}是正数数列,
∴an-an-1=2.
当n=1时,a1=S1=
| 1 |
| 4 |
∴数列{an}是等差数列,
∴an=1+2(n-1)=2n-1.
(2)bn=
| 1 |
| an•an+1 |
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴数列{bn}的前n项和Tn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
=
| 1 |
| 2 |
| 1 |
| 2n+1 |
=
| n |
| 2n+1 |
点评:本题考查了递推式的应用、等差数列的定义及其通项公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
sin(α-
)=( )
| π |
| 2 |
| A、sinα | B、-sinα |
| C、cosα | D、-cosα |
双曲线与椭圆
+
=1有相同的焦点,且离心率为
,则双曲线方程为( )
| x2 |
| 16 |
| y2 |
| 64 |
| 2 |
| A、x2-y2=96 |
| B、y2-x2=100 |
| C、x2-y2=80 |
| D、y2-x2=24 |