题目内容

已知sinα=
2
3
,α∈(
π
2
,π),cosβ=-
3
4
,β∈(π,
2
),求sin(α-β),cos(α+β),tan(α+β)的值.
考点:两角和与差的正弦函数,两角和与差的余弦函数,两角和与差的正切函数
专题:计算题,三角函数的求值
分析:根据已知先求出cosα,sinβ,从而可根据公式依次求出sin(α-β),cos(α+β),tan(α+β)的值.
解答: 解:∵sinα=
2
3
,α∈(
π
2
,π),∴cosα=-
1-sin2α
=-
5
3

∵cosβ=-
3
4
,β∈(π,
2
),∴sinβ=-
1-cos2β
=-
7
4

∴sin(α-β)=sinαcosβ-cosαsinβ=
2
3
×(-
3
4
)-(-
5
3
)×(-
7
4
)
=-
6+
35
12

cos(α+β)=cosαcosβ-sinαsinβ=(-
5
3
)×(-
3
4
)-
2
3
×(-
7
4
)
=
3
5
+2
7
12

tan(α+β)=
tanα+tanβ
1-tanαtanβ
=
-
2
5
5
+
7
3
1-(-
2
5
5
7
3
=
27
7
-32
5
17
点评:本题主要考察了两角和与差的正弦函数、两角和与差的余弦函数、两角和与差的正切函数公式的应用,计算量比较大,属于基本知识的考查.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网