题目内容

15.已知点A的坐标为(4,2),F是抛物线y2=2x的焦点,点M是抛物线上的动点,当|MF|+|MA|取得最小值时,点M的坐标为(2,2).

分析 求出焦点坐标和准线方程,把|MF|+|MA|转化为|MA|+|PM|,利用 当P、A、M三点共线时,|MA|+|PM|取得最小值,把y=2代入抛物线y2=2x 解得x值,即得M的坐标.

解答 解:由题意,F($\frac{1}{2}$,0),准线方程为x=-$\frac{1}{2}$,
设M到准线的距离d=|PM|,则由抛物线的定义得|MA|+|MF|=|MA|+|PM|,
故当P、A、M三点共线时,|MF|+|MA|取得最小值为|AP|=4-(-$\frac{1}{2}$)=$\frac{9}{2}$.
把 y=2代入抛物线y2=2x 得 x=2,故点M的坐标是(2,2),
故答案为:(2,2)

点评 本题考查抛物线的定义和性质应用,解答的关键利用是抛物线定义,体现了转化的数学思想.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网