题目内容
5.在双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0\;,\;b>0\;,\;c=\sqrt{{a^2}+{b^2}}})$中,已知c,a,b成等差数列,则该双曲线的离心率等于( )| A. | $\frac{5}{3}$ | B. | $\frac{{\sqrt{3}+1}}{2}$ | C. | $\frac{5}{4}$ | D. | $\frac{{\sqrt{5}+1}}{2}$ |
分析 由等差数列的中项的性质,可得b=2a-c,由a,b,c的关系和离心率公式,计算即可得到所求值.
解答 解:c,a,b成等差数列,可得
2a=c+b,即b=2a-c,
b2=c2-a2=(2a-c)2,
即为5a2=4ac,即c=$\frac{5}{4}$a,
由e=$\frac{c}{a}$=$\frac{5}{4}$.
故选:C.
点评 本题考查双曲线的离心率的求法,注意运用等差数列的中项的性质,考查双曲线的基本量的关系,以及运算能力,属于基础题.
练习册系列答案
相关题目
15.双曲线C:$\frac{{x}^{2}}{3}$-y2=1的左右顶点分别为A1,A2,点P在双曲线C上,且直线PA1的斜率的取值范围为[1,2],那么直线PA2的斜率的取值范围是( )
| A. | [$\frac{1}{6}$,$\frac{1}{3}$] | B. | ($\frac{1}{6}$,$\frac{1}{3}$) | C. | [-$\frac{1}{3}$,-$\frac{1}{6}$] | D. | (-$\frac{1}{3}$,-$\frac{1}{6}$) |
20.不等式|x+1|•(2x-1)≥0的解集为( )
| A. | {x|x≥$\frac{1}{2}$} | B. | {x|x≤-1或x≥$\frac{1}{2}$} | C. | {x|x=-1或x≥$\frac{1}{2}$} | D. | {x|x≤$\frac{1}{2}$或x≥-1} |
10.双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1(a>0,b>0)$的一条渐近线为y=2x,且一个焦点为(5,0),则双曲线的方程为( )
| A. | $\frac{{x}^{2}}{5}-\frac{{y}^{2}}{20}=1$ | B. | $\frac{{x}^{2}}{20}-\frac{{y}^{2}}{5}=1$ | ||
| C. | $\frac{3{x}^{2}}{25}-\frac{3{y}^{2}}{100}=1$ | D. | $\frac{3{x}^{2}}{100}-\frac{3{y}^{2}}{25}=1$ |
14.在如图所示的流程图中,若输入a,b,c的值分别为2,4,5,则输出的x=( )
| A. | 1 | B. | 2 | C. | lg2 | D. | 10 |
15.“函数f(x)=kx-3在[-1,1]上有零点”是“k≥3”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 既不充分也不必要条件 | D. | 充要条件 |