题目内容
10.双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1(a>0,b>0)$的一条渐近线为y=2x,且一个焦点为(5,0),则双曲线的方程为( )| A. | $\frac{{x}^{2}}{5}-\frac{{y}^{2}}{20}=1$ | B. | $\frac{{x}^{2}}{20}-\frac{{y}^{2}}{5}=1$ | ||
| C. | $\frac{3{x}^{2}}{25}-\frac{3{y}^{2}}{100}=1$ | D. | $\frac{3{x}^{2}}{100}-\frac{3{y}^{2}}{25}=1$ |
分析 求得双曲线的一条渐近线方程,可得b=2a,又c=5,即a2+b2=25,解得a,b,即可得到所求双曲线的方程.
解答 解:双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1(a>0,b>0)$的一条渐近线方程为y=$\frac{b}{a}$x,
由题意可得$\frac{b}{a}$=2,即b=2a,
又c=5,即a2+b2=25,
解得a=$\sqrt{5}$,b=2$\sqrt{5}$,
即有双曲线的方程为$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{20}$=1.
故选:A.
点评 本题考查双曲线的方程的求法,注意运用渐近线方程和焦点,考查运算能力,属于基础题.
练习册系列答案
相关题目
20.“a=2”是“直线ax+2y-1=0与x+(a-1)y+1=0互相平行”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
1.已知双曲线C:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为$\frac{\sqrt{5}}{2}$,则C的渐近线方程为( )
| A. | y=±$\frac{1}{4}$x | B. | y=±$\frac{1}{3}$x | C. | y=±$\frac{1}{2}$x | D. | y=±2x |
5.在双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0\;,\;b>0\;,\;c=\sqrt{{a^2}+{b^2}}})$中,已知c,a,b成等差数列,则该双曲线的离心率等于( )
| A. | $\frac{5}{3}$ | B. | $\frac{{\sqrt{3}+1}}{2}$ | C. | $\frac{5}{4}$ | D. | $\frac{{\sqrt{5}+1}}{2}$ |
15.已知直线y=1-x与双曲线ax2+by2=1(a>0,b<0)的渐近线交于A,B两点,且过原点和线段AB中点的直线的斜率为$-\frac{{\sqrt{3}}}{2}$,则$\frac{a}{b}$的值为( )
| A. | $-\frac{{\sqrt{3}}}{2}$ | B. | $-\frac{{2\sqrt{3}}}{3}$ | C. | $-\frac{{9\sqrt{3}}}{2}$ | D. | $-\frac{{2\sqrt{3}}}{27}$ |
2.不等式x(x-5)2>3(x-5)2的解集是( )
| A. | {x|x<-3} | B. | {x|3<x<5或x>5} | C. | {x|x>5} | D. | {x|3<x<5} |
19.执行如图所示的程序框图,若输入A的值为2,则输出的n值为( )

| A. | 3 | B. | 4 | C. | 5 | D. | 6 |