题目内容
20.不等式|x+1|•(2x-1)≥0的解集为( )| A. | {x|x≥$\frac{1}{2}$} | B. | {x|x≤-1或x≥$\frac{1}{2}$} | C. | {x|x=-1或x≥$\frac{1}{2}$} | D. | {x|x≤$\frac{1}{2}$或x≥-1} |
分析 为了去掉绝对值符号,当x+1=0时,即x=-1时,不等式成立,当x+1≠0时,原不等式等价于2x-1≥0,解得x≥$\frac{1}{2}$,问题得以解决.
解答 解:当x+1=0时,即x=-1时,不等式成立,
当x+1≠0时,原不等式等价于2x-1≥0,解得x≥$\frac{1}{2}$,
故原不等式的解集为{x|x=-1或x≥$\frac{1}{2}$},
故选:C.
点评 本题主要考查绝对值不等式的解法,体现了分类讨论、等价转化的数学思想,属于中档题.
练习册系列答案
相关题目
10.双曲线$M:{x^2}-\frac{y^2}{b^2}=1$的左,右焦点分别为F1,F2,记|F1F2|=2c,以坐标原点O为圆心,c为半径的圆与双曲线M在第一象限的交点为P,若|PF1|=c+2,则P点的横坐标为( )
| A. | $\frac{{\sqrt{3}+1}}{2}$ | B. | $\frac{{\sqrt{3}+2}}{2}$ | C. | $\frac{{\sqrt{3}+3}}{2}$ | D. | $\frac{{3\sqrt{3}}}{2}$ |
11.已知双曲线:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,焦距为2c,直线y=$\sqrt{3}$(x+c)与双曲线的一个交点M满足∠MF1F2=2∠MF2F1,则双曲线的离心率为( )
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{3}$+1 |
15.设对任意实数x>y>0,若不等式x+2$\sqrt{xy}$>ay恒成立,则实数a的取值范围为( )
| A. | (-∞,0) | B. | (-∞,0] | C. | (-∞,3) | D. | (-∞,3] |
5.在双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0\;,\;b>0\;,\;c=\sqrt{{a^2}+{b^2}}})$中,已知c,a,b成等差数列,则该双曲线的离心率等于( )
| A. | $\frac{5}{3}$ | B. | $\frac{{\sqrt{3}+1}}{2}$ | C. | $\frac{5}{4}$ | D. | $\frac{{\sqrt{5}+1}}{2}$ |
12.“p∨q为真”是“¬p为假”的( )条件.
| A. | 充分不必要 | B. | 必要不充分 | ||
| C. | 充要 | D. | 既不充分也不必要 |
9.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦点分别为F1、F2,其一条渐近线为x+$\sqrt{2}$y=0,点M在双曲线上,且MF1⊥x轴,若F2同时为抛物线y2=12x的焦点,则F1到直线F2M的距离为( )
| A. | $\frac{{3\sqrt{6}}}{5}$ | B. | $\frac{{5\sqrt{6}}}{6}$ | C. | $\frac{5}{6}$ | D. | $\frac{6}{5}$ |
10.曲线y=x2与x=1及坐标轴围成的封闭区域为Ω1,不等式组$\left\{\begin{array}{l}{0≤x≤1}\\{0≤y≤1}\end{array}\right.$表示的平面区域为Ω2,在区域Ω2内随机取一点,则该点是取自于区域Ω1的概率是( )
| A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{2}{5}$ |