题目内容
18.已知函数f(x)=|x-2m|-|x+m|(m>0).(1)当m=2时,求不等式f(x)≥1的解集;
(2)对于任意实数x,t,不等式f(x)≤|t+3|+|t-2|恒成立,求m的取值范围.
分析 (1)去掉绝对值符号,得到分段函数,然后求解不等式的解集.
(2)利用函数的恒成立,绝对值不等式的几何意义,转化求解即可.
解答 解:(1)$f(x)=|{x-2m}|-|{x+m}|=\left\{\begin{array}{l}-3m,x≥2m\\-2x+m,-m<x<2m\\ 3m,x≤-m\end{array}\right.$,
当m=2时,f(x)=$\left\{\begin{array}{l}{-6,x≥4}\\{-2x+2,-2<x<4}\\{6,x≤-2}\end{array}\right.$,
由不等式f(x)≥1,
可得:-2<x<4时:-2x+2≥1得-2<$x≤\frac{1}{2}$,
所以不等式f(x)≥1的解集为$\{x|-2<x≤\frac{1}{2}\}$.
(2)不等式f(x)≤|t+3|+|t-2|对任意的实数t,x恒成立,
等价于对任意的实数x,f(x)≤[|t+3|+|t-2|]min恒成立,即[f(x)]max≤[|t+3|+|t-2|]min,
∵f(x)=|x-2m|-|x+m|≤|(x+m)-(x-2m)|=3m,|t+3|+|t-2|≥|(t+3)-(t-2)|=5,
∴3m≤5,又m>0,∴0$<m≤\frac{5}{3}$.
点评 本题考查函数恒成立,绝对值不等式的解法,考查计算能力.
练习册系列答案
相关题目
8.设{an}为各项均为正数的等比数列,且a2=$\frac{1}{3}$,a6=$\frac{1}{243}$.
(Ⅰ)求{an}的通项公式;
(Ⅱ)求和:T2n=a1-2a2+3a3-…-2na2n.
(Ⅰ)求{an}的通项公式;
(Ⅱ)求和:T2n=a1-2a2+3a3-…-2na2n.
9.若全集U=R,集合A={x|-1≤x<1},B={x|x≤0或x>2},则集合A∪∁UB=( )
| A. | {x|0<x<1} | B. | {x|-1≤x≤2} | C. | {x|-1<x<2} | D. | {x|0≤x≤1} |
13.某初级中学篮球队假期集训,集训前共有8个篮球,其中4个是新的(即没有用过的球),4个是旧的(即至少用过一次的球),毎次训练都从中任意取出2个球,用完后放回,则第二次训练时恰好取到1个新球的概率为( )
| A. | $\frac{24}{49}$ | B. | $\frac{4}{7}$ | C. | $\frac{25}{49}$ | D. | $\frac{51}{98}$ |
20.设x,y满足约束条件$\left\{{\begin{array}{l}{2x-y-2≤0}\\{x-2y+2≥0}\\{x+y-2≥0}\end{array}}\right.$若z=mx+y取得最大值时的最优解有无穷多个,则实数m的值是( )
| A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | -2 | D. | 1 |