题目内容

1.已知f(x)是定义在R上的单调递增函数,则下列四个命题:①若f(x0)>x0,则f[f(x0)]>x0;②若f[f(x0)]>x0,则f(x0)>x0;③若f(x)是奇函数,则f[f(x)]也是奇函数;④若f(x)是奇函数,则f(x1)+f(x2)=0?x1+x2=0,其中正确的有(  )
A.4个B.3个C.2个D.1个

分析 ①,由f(x)是定义在R上的单调递增函数,若f(x0)>x0,则f[f(x0)]>f(x0)>x0,;
②,若f(x0)≤x0,由f(x)是定义在R上的单调递增函数得f[f(x0)]≤f(x0)≤x0与已知矛盾;
③,由奇函数的性质及判定得f[f(-x)]=f[-f(x)]=-f[f(-x)],即可判定;
④,若f(x1)+f(x2)=0,则f(x1)=-f(x2)⇒x1=-x2⇒x1+x2=0;若x1+x2=0⇒x1=-x2⇒f(x1)=f(-x2)=-f(x2)⇒f(x1)+f(x2)=0

解答 解:对于①,∵f(x)是定义在R上的单调递增函数,若f(x0)>x0,则f[f(x0)]>f(x0)>x0,故①正确;
对于②,当f[f(x0)]>x0时,若f(x0)≤x0,由f(x)是定义在R上的单调递增函数得f[f(x0)]≤f(x0)≤x0与已知矛盾,故②正确;
对于③,若f(x)是奇函数,则f[f(-x)]=f[-f(x)]=-f[f(-x)],∴f[f(x)]也是奇函数,故③正确;
对于④,当f(x)是奇函数,且是定义在R上的单调递增函数时,若f(x1)+f(x2)=0,则f(x1)=-f(x2)⇒x1=-x2⇒x1+x2=0;
若x1+x2=0⇒x1=-x2⇒f(x1)=f(-x2)=-f(x2)⇒f(x1)+f(x2)=0,故④正确;
故选:A

点评 本题考查了命题真假的判断,考查了函数的概念、性质,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网