题目内容
已知3x+3y=9x+9y,求
的取值范围.
| 27x+27y |
| 3x+3y |
考点:有理数指数幂的化简求值,基本不等式在最值问题中的应用
专题:计算题,三角函数的图像与性质
分析:令a=3x,b=3y,则a>0,b>0,由3x+3y=9x+9y,得a+b=a2+b2,即有(a-
)2+(b-
)2=
,
令a-
=
cosθ,b-
=
sinθ,θ∈(-
,
),有
=
+
(sinθ+cosθ)-
sinθcosθ,
令sinθ+cosθ=t,则sinθcosθ=
,有t=
sin(θ+
),可求t∈(0,
],从而可得
+
(sinθ+cosθ)-
sinθcosθ=
-
(t-
)2,即可求
的取值范围.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
令a-
| 1 |
| 2 |
| ||
| 2 |
| 1 |
| 2 |
| ||
| 2 |
| π |
| 4 |
| 3π |
| 4 |
| 27x+27y |
| 3x+3y |
| 3 |
| 4 |
| ||
| 4 |
| 1 |
| 2 |
令sinθ+cosθ=t,则sinθcosθ=
| t2-1 |
| 2 |
| 2 |
| π |
| 4 |
| 2 |
| 3 |
| 4 |
| ||
| 4 |
| 1 |
| 2 |
| 9 |
| 8 |
| 1 |
| 4 |
| ||
| 2 |
| 27x+27y |
| 3x+3y |
解答:
解:令a=3x,b=3y,则a>0,b>0
∵3x+3y=9x+9y,∴a+b=a2+b2
∴(a-
)2+(b-
)2=

令a-
=
cosθ,b-
=
sinθ,θ∈(-
,
)
∴
=a2+b2-ab=a+b-ab=
+
cosθ+
+
sinθ-(
+
cosθ)(
+
sinθ)
=1+
cosθ+
sinθ-
-
cosθ-
sinθ-
sinθcosθ
=
+
(sinθ+cosθ)-
sinθcosθ
令sinθ+cosθ=t,则sinθcosθ=
有:t=
sin(θ+
)
∵θ∈(-
,
),∴θ+
∈(0,π),∴t∈(0,
]
∴
+
(sinθ+cosθ)-
sinθcosθ
=
+
t-
=1+
t-
t2
=1-
(t2-
t+(
)2)+
=
-
(t-
)2
∴当t=
时,取最大值
,当t趋向0时,最小值趋向1.
故
的取值范围是[1,
].
∵3x+3y=9x+9y,∴a+b=a2+b2
∴(a-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
令a-
| 1 |
| 2 |
| ||
| 2 |
| 1 |
| 2 |
| ||
| 2 |
| π |
| 4 |
| 3π |
| 4 |
∴
| 27x+27y |
| 3x+3y |
| 1 |
| 2 |
| ||
| 2 |
| 1 |
| 2 |
| ||
| 2 |
| 1 |
| 2 |
| ||
| 2 |
| 1 |
| 2 |
| ||
| 2 |
=1+
| ||
| 2 |
| ||
| 2 |
| 1 |
| 4 |
| ||
| 4 |
| ||
| 4 |
| 1 |
| 2 |
=
| 3 |
| 4 |
| ||
| 4 |
| 1 |
| 2 |
令sinθ+cosθ=t,则sinθcosθ=
| t2-1 |
| 2 |
有:t=
| 2 |
| π |
| 4 |
∵θ∈(-
| π |
| 4 |
| 3π |
| 4 |
| π |
| 4 |
| 2 |
∴
| 3 |
| 4 |
| ||
| 4 |
| 1 |
| 2 |
=
| 3 |
| 4 |
| ||
| 4 |
| t2-1 |
| 4 |
=1+
| ||
| 4 |
| 1 |
| 4 |
=1-
| 1 |
| 4 |
| 2 |
| ||
| 2 |
| 1 |
| 8 |
=
| 9 |
| 8 |
| 1 |
| 4 |
| ||
| 2 |
∴当t=
| ||
| 2 |
| 9 |
| 8 |
故
| 27x+27y |
| 3x+3y |
| 9 |
| 8 |
点评:本题主要考察了有理数指数幂的化简求值,基本不等式在最值问题中的应用,考察了转化思想,属于难题.
练习册系列答案
相关题目
若2lg(x-2y)=lgx+lgy(x,y∈R),则
的值为( )
| y |
| x |
| A、4 | ||
B、1或
| ||
| C、1或4 | ||
D、
|
若集合A={x|-2<x<1},B={x|0<x<2},则A∩∁UB=( )
| A、{x|-1<x<1} |
| B、{x|-2<x<1} |
| C、{x|-2<x≤0} |
| D、{x|0<x<1} |