题目内容
| A、一段圆弧 |
| B、一段抛物线 |
| C、一段双曲线 |
| D、一段正弦曲线 |
考点:平面与圆柱面的截线
专题:选作题,矩阵和变换
分析:利用平面图分析曲线的对称性,即可得出结论.
解答:
解:将图2剪开展成平面图分析可知,曲线为轴对称图形,将图3剪开展成平面图分析可知,曲线也为中心对称图形.所以此曲线即为轴对称图形又为中心对称图形,故只有D正确.
故选:D.
故选:D.
点评:本题考查平面与圆柱面的截线,考查函数的对称性和奇偶性,比较基础.
练习册系列答案
相关题目
函数f(x)=lnx+x3-9的零点所在的区间为( )
| A、(0,1) |
| B、(1,2) |
| C、(2,3) |
| D、(3,4) |
已如f(x)是定义在R上的偶函数,且满足f(x+2)=f(x),当x∈[0,1]时,f(x)=2x.若在区间[-2,3]上方程ax+2a-f(x)=0恰有四个不相等的实数根,则实数a的取值范围 是( )
A、(
| ||||
B、(
| ||||
C、(0,
| ||||
D、(0,
|
已知函数f(x)=x2-2ax+6在区间(-∞,3)是减函数,则( )
| A、a≥3 | B、a>0 |
| C、a≤3 | D、a<3 |
若
与
不共线,实数x、y满足等式2x
+(3-y)
=x
+(3y+1)
,则实数x+y=( )
| a |
| b |
| a |
| b |
| b |
| a |
| A、1 | B、2 | C、3 | D、-2 |
设点P是以F1,F2为左、右焦点的双曲线
-
=1(a>0,b>0)左支上一点,且满足
•
=0,tan∠PF2F1=
,则此双曲线的离心率为( )
| x2 |
| a2 |
| y2 |
| b2 |
| PF1 |
| PF2 |
| 2 |
| 3 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|