ÌâÄ¿ÄÚÈÝ
2£®ÒÑÖªÇúÏßCµÄ¼«×ø±ê·½³ÌÊǦÑ2-4¦Ñcos£¨¦È-$\frac{¦Ð}{3}$£©-1=0£®ÒÔ¼«µãÎªÆ½ÃæÖ±½Ç×ø±êϵµÄԵ㣬¼«ÖáΪxÖáµÄÕý°ëÖὨÁ¢Æ½ÃæÖ±½Ç×ø±êϵ£¬Ö±ÏßlµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=tcos¦Á}\\{y=\sqrt{3}+tsin¦Á}\end{array}\right.$£¨tΪ²ÎÊý£©£®£¨¢ñ£©½«ÇúÏßCµÄ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÈôÖ±ÏßlÓëÇúÏßCÏཻÓÚA¡¢BÁ½µã£¬ÇÒ|AB|=3$\sqrt{2}$£¬ÇóÖ±ÏßµÄÇãб½Ç¦ÁµÄÖµ£®
·ÖÎö £¨1£©ÓÉ${¦Ñ^2}-4¦Ñcos£¨¦È-\frac{¦Ð}{3}£©-1=0$£¬Õ¹¿ªÎª¦Ñ2-4$£¨\frac{1}{2}¦Ñcos¦È+\frac{\sqrt{3}}{2}¦Ñsin¦È£©$-1=0£¬ÀûÓÃ$\left\{\begin{array}{l}{{¦Ñ}^{2}={x}^{2}+{y}^{2}}\\{x=¦Ñcos¦È}\\{y=¦Ñsin¦È}\end{array}\right.$¼´¿ÉµÃ³ö¼«×ø±ê·½³Ì£®
£¨II£©½«$\left\{\begin{array}{l}x=tcos¦Á\\ y=\sqrt{3}+tsin¦Á\end{array}\right.$´úÈëÔ²µÄ·½³ÌµÃ»¯¼òµÃt2-2tcos¦Á-4=0£¬ÀûÓÃÏÒ³¤¹«Ê½ $|AB|=|{t_1}-{t_2}|=\sqrt{{{£¨{t_1}+{t_2}£©}^2}-4{t_1}{t_2}}=\sqrt{4{{cos}^2}¦Á+16}=3\sqrt{2}$£¬»¯¼ò¼´¿ÉµÃ³ö£®
½â´ð ½â£º£¨1£©ÓÉ${¦Ñ^2}-4¦Ñcos£¨¦È-\frac{¦Ð}{3}£©-1=0$£¬Õ¹¿ªÎª¦Ñ2-4$£¨\frac{1}{2}¦Ñcos¦È+\frac{\sqrt{3}}{2}¦Ñsin¦È£©$-1=0£¬»¯Îª${x}^{2}+{y}^{2}-2x-2\sqrt{3}y$-1=0£¬
Åä·½µÃÔ²CµÄ·½³ÌΪ${£¨x-1£©^2}+{£¨y-\sqrt{3}£©^2}=5$£¨4·Ö£©
£¨2£©½«$\left\{\begin{array}{l}x=tcos¦Á\\ y=\sqrt{3}+tsin¦Á\end{array}\right.$´úÈëÔ²µÄ·½³ÌµÃ£¨tcos¦Á-1£©2+£¨tsin¦Á£©2=5£¬£¨5·Ö£©
»¯¼òµÃt2-2tcos¦Á-4=0£¬£¨6·Ö£©
ÉèA¡¢BÁ½µã¶ÔÓ¦µÄ²ÎÊý·Ö±ðΪt1¡¢t2£¬Ôò$\left\{\begin{array}{l}{t_1}+{t_2}=2cos¦Á\\{t_1}{t_2}=-4\end{array}\right.$£¬£¨7·Ö£©
ËùÒÔ$|AB|=|{t_1}-{t_2}|=\sqrt{{{£¨{t_1}+{t_2}£©}^2}-4{t_1}{t_2}}=\sqrt{4{{cos}^2}¦Á+16}=3\sqrt{2}$£¬£¨8·Ö£©
ËùÒÔ4cos2¦Á=2£¬$cos¦Á=¡À\frac{{\sqrt{2}}}{2}$£¬$¦Á=\frac{¦Ð}{4}»ò¦Á=\frac{3¦Ð}{4}$£®£¨10·Ö£©
µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¼°ÆäÓ¦Óᢼ«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢Ö±ÏßÓëÔ²ÏཻÏÒ³¤ÎÊÌ⣬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | ?x¡ÊN*£¬£¨x-2£©2£¾0 | B£® | ?x0¡ÊR£¬tanx0=2 | C£® | ?x0¡ÊR£¬log2x0£¼2 | D£® | ?x¡ÊR£¬3x-2£¾0 |
| A£® | a£¼c£¼b | B£® | c£¼b£¼a | C£® | a£¼b£¼c | D£® | b£¼a£¼c |
| A£® | $\frac{5¦Ð}{6}$ | B£® | $\frac{2¦Ð}{3}$ | C£® | $\frac{¦Ð}{3}$ | D£® | $\frac{¦Ð}{6}$ |