题目内容

10.已知△ABC的三个内角A,B,C依次成等差数列,BC边上的中线AD=$\sqrt{7}$,AB=2,则S△ABC=(  )
A.3B.2$\sqrt{3}$C.3$\sqrt{3}$D.6

分析 由于△ABC的三个内角A、B、C成等差数列,且内角和等于180°,故 B=60°,ABD中,由余弦定理可得BD的长,进而利用三角形面积公式即可计算得解.

解答 解:∵由于△ABC的三个内角A、B、C成等差数列,且内角和等于180°,
∴B=60°,
∵△ABD中,由余弦定理可得:AD2=AB2+BD2-2AB•BD•cosB,即:7=4+BD2-2BD,
∴BD=3或-1(舍去),可得:BC=6,
∴S△ABC=$\frac{1}{2}AB•BC•sinB$=$\frac{1}{2}×2×6×\frac{\sqrt{3}}{2}$=3$\sqrt{3}$.
故选:C.

点评 本题考查等差数列的定义,余弦定理以及三角形面积公式的应用,求出B=60°,是解题的关键,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网