题目内容

19.若实数x、y满足约束条件$\left\{\begin{array}{l}{3x-y-2≥0}\\{x-2y+1≤0}\\{2x+y-8≤0}\end{array}\right.$,则z=4x+y的最大值为14.

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}{3x-y-2≥0}\\{x-2y+1≤0}\\{2x+y-8≤0}\end{array}\right.$作出可行域如图:

联立$\left\{\begin{array}{l}{x-2y+1=0}\\{2x+y-8=0}\end{array}\right.$,解得A(3,2),
化z=4x+y为y=-4x+z,由图可知,当直线y=-4x+z过A时,直线在y轴上的截距最大,z有最小值为14.
故答案为:14.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网