题目内容
11.| A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | $-\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
分析 由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式,再利用诱导公式,求得要求式子的值.
解答 解:根据f(x)=Asin(ωx+φ)(A>0ω>0,$|φ|<\frac{π}{2}$,x∈R)在一个周期的图象,
可得A=1,$\frac{T}{4}$=$\frac{1}{4}•\frac{2π}{ω}$=$\frac{π}{12}$+$\frac{π}{6}$,∴ω=2,∴f(x)=sin(2x+φ).
再根据五点法作图可得2×$\frac{π}{12}$+φ=$\frac{π}{2}$,∴φ=$\frac{π}{3}$,f(x)=sin(2x+$\frac{π}{3}$).
故当$f(x)=\frac{1}{2}$=sin(2x+$\frac{π}{3}$)时,$cos(2x-\frac{π}{6})$=sin($\frac{π}{2}$+2x-$\frac{π}{6}$)=sin(2x+$\frac{π}{3}$)=$\frac{1}{2}$,
故选:B.
点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,属于基础题.
练习册系列答案
相关题目
19.集合A={直线l|直线l的方程是(m+3)x+(m-2)y-1-2m=0},集合B={直线l|直线l是x2+y2=2的切线},则A∩B=( )
| A. | ∅ | B. | {(1,1)} | C. | {(x,y)|x+y-2=0} | D. | {(x,y)|3x-2y-1=0} |
16.某船在A处向正东方向航行xkm后到达B处,然后沿南偏西60°方向航行3km到达C处.若A与C相距$\sqrt{3}$km,则x的值是( )
| A. | 3 | B. | $\sqrt{3}$或2$\sqrt{3}$ | C. | 2$\sqrt{3}$ | D. | $\sqrt{3}$ |