题目内容

10.已知数列{an}中,a3=5,a2+a6=14,且2${\;}^{{a}_{n}}$,2${\;}^{{a}_{n+1}}$,2${\;}^{{a}_{n+2}}$成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足bn=an-(-1)nn,数列{bn}的前n项和为Tn,求T21

分析 (I)由2${\;}^{{a}_{n}}$,2${\;}^{{a}_{n+1}}$,2${\;}^{{a}_{n+2}}$成等比数列,可得$({2}^{{a}_{n+1}})^{2}$=2${\;}^{{a}_{n}}$•2${\;}^{{a}_{n+2}}$,可得2an+1=an+an+2.利用等差数列的通项公式可得an
(II)利用“错位相减法”、等差数列等比数列的求和公式即可得出.

解答 解:(I)∵2${\;}^{{a}_{n}}$,2${\;}^{{a}_{n+1}}$,2${\;}^{{a}_{n+2}}$成等比数列,∴$({2}^{{a}_{n+1}})^{2}$=2${\;}^{{a}_{n}}$•2${\;}^{{a}_{n+2}}$,∴2an+1=an+an+2
∴数列{an}为等差数列,设公差为d,∵a3=5,a5+a6=20,
∴a1+2d=5,2a1+9d=20,
解得a1=1,d=2.
∴an=1+2(n-1)=2n-1.
(II)bn=an-(-1)nn=(2n-1)-(-1)nn.
设数列{(-1)nn}的前n项和为Sn
则Sn=-1+2-3+…+(-1)nn.
∴-Sn=1-2+3+…+(-1)n(n-1)+(-1)n+1n,
∴2Sn=-1+1-1+…+(-1)n-(-1)n+1n=$\frac{-[1-(-1)^{n}]}{1-(-1)}$-(-1)n+1n,
∴Sn=$\frac{(-1)^{n}-1}{4}$+$\frac{(-1)^{n}n}{2}$.
∴Tn=$\frac{n(1+2n-1)}{2}$-$\frac{(-1)^{n}-1}{4}$-$\frac{(-1)^{n}n}{2}$=n2-$\frac{(-1)^{n}-1}{4}$-$\frac{(-1)^{n}n}{2}$.
∴T21=212-$\frac{-2}{4}$-$\frac{-21}{2}$=452.

点评 本题考查了等差数列与等比数列的通项公式与求和公式、“错位相减法”,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网