题目内容
11.“中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{an},则此数列的项数为134.分析 由能被3除余1且被5除余1的数就是能被15整除余1的数,运用等差数列通项公式,以及解不等式即可得到所求项数.
解答 解:由能被3除余1且被5除余1的数就是能被15整除余1的数,
故an=15n-14.
由an=15n-14≤2017
得n≤135,
∵当n=1时,符合要求,但是该数列是从2开始的,
故此数列的项数为135-1=134.
故答案为:134
点评 本题考查数列模型在实际问题中的应用,考查等差数列的通项公式的运用,考查运算能力,属于基础题
练习册系列答案
相关题目
1.设变量x,y满足$\left\{\begin{array}{l}{2x+y-6≥0}\\{x+2y-6≥0}\\{y≥0}\end{array}\right.$,则目标函数z=2x+3y的最小值为( )
| A. | 6 | B. | 10 | C. | 12 | D. | 18 |
11.探究函数$f(x)=2x+\frac{8}{x},x∈(0,+∞)$的最小值,并确定取得最小值时x的值.列表如下:
请观察表中y值随x值变化的特点,完成以下的问题.
(1)函数$f(x)=2x+\frac{8}{x}(x>0)$在区间(0,2)上递减;函数$f(x)=2x+\frac{8}{x}(x>0)$在区间(2,+∞)上递增.当x=2时,y最小=8.
(2)证明:函数$f(x)=2x+\frac{8}{x}(x>0)$在区间(0,2)递减.
(3)思考:函数y=2x+$\frac{8}{x}$时,有最值吗?是最大值还是最小值?此时x为何值?(直接回答结果,不需证明)
| x | … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
| y | … | 16 | 10 | 8.34 | 8.1 | 8.01 | 8 | 8.01 | 8.04 | 8.08 | 8.6 | 10 | 11.6 | 15.14 | … |
(1)函数$f(x)=2x+\frac{8}{x}(x>0)$在区间(0,2)上递减;函数$f(x)=2x+\frac{8}{x}(x>0)$在区间(2,+∞)上递增.当x=2时,y最小=8.
(2)证明:函数$f(x)=2x+\frac{8}{x}(x>0)$在区间(0,2)递减.
(3)思考:函数y=2x+$\frac{8}{x}$时,有最值吗?是最大值还是最小值?此时x为何值?(直接回答结果,不需证明)