题目内容

10.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;(a>b>0)$右焦点为F,又椭圆与x轴正半轴交于A点,与y轴正半轴交于点B(0,2),且$\overline{BF}•\overline{BA}=4\sqrt{2}+4$,过点D(4,0)作直线l交椭圆于不同的两点P,Q.
(1)求椭圆的方程;
(2)若在x轴上的点M(m,0),使$|{\overline{MP}}|=|{\overline{MQ}}|$,求m的取值范围.

分析 (1)由题意可得B(0,b),F(c,0),D( $\frac{{a}^{2}}{c}$,0).即可表示出 $\overrightarrow{BF}$,$\overrightarrow{FD}$,$\overrightarrow{BF}$•$\overrightarrow{FD}$,又a2=b2+c2,即可得出椭圆的方程;
(2)设l的方程为y=k(x-4),与椭圆方程联立,利用△>0即可得出k的取值范围;设交点P(x1,y1),Q(x2,y2),PQ的中点R(x0,y0),利用(2)中的根与系数的关系和中点坐标公式可用k表示点R的坐标,当k=0时,容易得出M;k≠0时,若|$\overrightarrow{MP}$|=|$\overrightarrow{MQ}$|?MR⊥l?k•kMR=-1,再根据k的取值范围即可得出.

解答 解:(1)由题意可得B(0,b),F(c,0),D($\frac{{a}^{2}}{c}$,0).
于是$\overrightarrow{BF}$=(c,-b),$\overrightarrow{FD}$=($\frac{{a}^{2}}{c}$-c,0)=($\frac{{b}^{2}}{c}$,0)=(2,0).
故$\frac{{b}^{2}}{c}$=2,$\overrightarrow{BF}$•$\overrightarrow{FD}$=b2=4
∴c=2,于是a2=b2+c2=8
∴椭圆方程为$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1$.
(2)点D(4,0)在椭圆的外部,当直线l的斜率不存在时,直线l与椭圆C无交点,所以l的斜率存在.
故设l的方程为y=k(x-4),由$\left\{\begin{array}{l}\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1\\ y=k(x-4)\end{array}\right.$得(2k2+1)x2-16k2x+32k2-8=0,
依题意△=-(64k2-32)>0,k2<$\frac{1}{2}$
∴l的斜率的取值范围为-$\frac{\sqrt{2}}{2}$<k<$\frac{\sqrt{2}}{2}$.
设交点P(x1,y1),Q(x2,y2),PQ的中点R(x0,y0),则x1+x2=$\frac{16{k}^{2}}{2{k}^{2}+1}$,
x0=$\frac{{x}_{1}+{x}_{2}}{2}$=$\frac{8{k}^{2}}{2{k}^{2}+1}$,y0=k(x0-4)=k($\frac{8{k}^{2}}{2{k}^{2}+1}$-4)=$\frac{-4k}{2{k}^{2}+1}$.
当k=0时,P、Q为长轴的两个顶点.
此时M(0,0)满足|$\overrightarrow{MP}$|=|$\overrightarrow{MQ}$|,
k≠0时,若|$\overrightarrow{MP}$|=|$\overrightarrow{MQ}$|?MR⊥l?k•kMR=-1
又kMR=$\frac{4k}{2{k}^{2}+1}$÷(m-$\frac{8{k}^{2}}{2{k}^{2}+1}$)=$\frac{4k}{(2m-8){k}^{2}+m}$
由kMR•k=-1,即4k2=-(2m-8)k2-m=(8-2m)k2-m(4-2m)k2=m.
∵0<k2<$\frac{1}{2}$,∴m≠2时,k2=$\frac{m}{4-2m}$.
∴0<$\frac{m}{4-2m}$<$\frac{1}{2}$.
由$\left\{\begin{array}{l}\frac{m}{4-2m}>0\\ \frac{m}{4-2m}<\frac{1}{2}\end{array}\right.$解得$\left\{\begin{array}{l}0<m<2\\ m>2或m<1\end{array}\right.$,
∴0<m<1综上得0≤m<1.

点评 熟练掌握椭圆的标准方程及其性质、直线与椭圆的位置关系转化为方程联立得到△>0即根与系数的关系、中点坐标公式、相互垂直的直线之间的关系等是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网