题目内容

8.已知三棱柱ABC-A1B1C1的侧棱垂直于底面,各顶点都在同一球面上,若该棱柱的体积为$2\sqrt{3}$,AB=2,AC=1,∠BAC=60°,则此球的表面积等于(  )
A.B.20πC.D.16π

分析 画出球的内接直三棱ABC-A1B1C1,作出球的半径,然后可求球的表面积.

解答 解:设棱柱的高为h,则$\frac{1}{2}×2×1×\frac{\sqrt{3}}{2}×h=2\sqrt{3}$,∴h=4.
∵AB=2,AC=1,∠BAC=60°,
∴BC=$\sqrt{3}$
如图,连接上下底面外心,O为PQ的中点,OP⊥平面ABC,
则球的半径为OA,
由题意,AP=$\frac{1}{2}$•$\frac{\sqrt{3}}{\frac{\sqrt{3}}{2}}$=1,OP=2,
∴OA=$\sqrt{4+1}$=$\sqrt{5}$,
所以球的表面积为:4πR2=20π.
故选:B.

点评 本题考查球的体积和表面积,球的内接体问题,考查学生空间想象能力理解失误能力,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网