题目内容

已知直线
y
b
=
kx
b
+1与圆x2+y2=100有公共点,且公共点的横坐标和纵坐标均为整数,那么这样的直线共有(  )
A、60条B、66条
C、70条D、71条
考点:直线与圆的位置关系
专题:计算题,直线与圆
分析:直线是截距式方程,因而不平行坐标轴,不过原点,考查圆上横坐标和纵坐标均为整数的点的个数,结合排列组合知识分类解答.
解答: 解:可知直线的横、纵截距都不为零,即与坐标轴不垂直,不过坐标原点,而圆x2+y2=100上的整数点共有12个,分别为(6,±8),(-6,±8),(8,±6),(-8,±6),(±10,0),(0,±10),前8个点中,过任意一点的圆的切线满足,有8条;12个点中过任意两点,构成C122=66条直线,其中有4条直线垂直x轴,有4条直线垂直y轴,还有6条过原点(圆上点的对称性),故满足题设的直线有52条.综上可知满足题设的直线共有52+8=60条,
故选A.
点评:本题主要考查直线与圆的概念,以及组合的知识,既要数形结合,又要分类考虑,要结合圆上点的对称性来考虑过点的直线的特征.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网