题目内容

如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=
 
°.
考点:与圆有关的比例线段
专题:立体几何
分析:利用四边形OABC为平行四边形,可得∠AOC=∠B,∠OAB=∠OCB,∠OAB+∠B=180°.利用四边形ABCD是圆的内接四边形,可得∠D+∠B=180°.利用同弧所对的圆周角和圆心角可得∠D=
1
2
∠AOC
,进而即可得出.
解答: 解:∵四边形OABC为平行四边形,
∴∠AOC=∠B,∠OAB=∠OCB,∠OAB+∠B=180°.
∵四边形ABCD是圆的内接四边形,
∴∠D+∠B=180°.
∠D=
1
2
∠AOC

∴3∠D=180°,解得∠D=60°.
∴∠OAB=∠OCB=180°-∠B=60°.
∴∠OAD+∠OCD=360°-(∠D+∠B+∠OAB+∠OCB)=360°-(60°+120°+60°+60°)=60°.
故答案为:60°.
点评:本题考查了平行四边形的性质、圆的内接四边形的性质、同弧所对的圆周角和圆心角的关系,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网