题目内容
已知函数f(x)满足-f(x)=f(-x),且当x∈(-∞,0)时,f(x)+xf′(x)<0成立,若a=(20.1)•f(20.1),b=(ln2)•f(ln2),c=(log2
)•f(log2
),则a,b,c的大小关系是( )
| 1 |
| 8 |
| 1 |
| 8 |
| A、a>b>c |
| B、c>b>a |
| C、c>a>b |
| D、a>c>b |
考点:利用导数研究函数的单调性,导数的运算
专题:综合题,导数的综合应用
分析:令g(x)=xf(x),得g(x)是偶函数;由x∈(-∞,0)时,g′(x)=f(x)+xf′(x)<0,得函数g(x)在x∈(-∞,0)上单调递减,从而得g(x)在(0,+∞)上单调递增;再由∴函数g(x)在x∈(0,+∞)上单调递增.再由-
=3>20.1>1>ln2>0,得a,b,c的大小.
| log |
2 |
解答:
解:∵-f(x)=f(-x),∴f(x)是奇函数,
∴xf(x)是偶函数.
设g(x)=xf(x),当x∈(-∞,0)时,g′(x)=f(x)+xf′(x)<0,
∴函数g(x)在x∈(-∞,0)上单调递减,
∴函数g(x)在x∈(0,+∞)上单调递增.
∵-
=3>20.1>1>ln2>0,
∴g(
)>g(20.1)>g(ln2),
故选:C.
∴xf(x)是偶函数.
设g(x)=xf(x),当x∈(-∞,0)时,g′(x)=f(x)+xf′(x)<0,
∴函数g(x)在x∈(-∞,0)上单调递减,
∴函数g(x)在x∈(0,+∞)上单调递增.
∵-
| log |
2 |
∴g(
| log |
2 |
故选:C.
点评:本题考查了函数的图象与奇偶性关系以及用导数研究函数的单调性等知识,解题的关键是构造函数g(x)并求导,属于易出错的题目.
练习册系列答案
相关题目
设点P是椭圆
+
=1上的动点,F1为椭圆的左焦点,M(6,4)为定点,则|PM|+|PF1|的最大值是( )
| x2 |
| 25 |
| y2 |
| 16 |
| A、15 | ||
B、8+
| ||
| C、10 | ||
D、4
|
已知a、b、c是△ABC的三边长,且满足
=0,则△ABC一定是( )
|
| A、等腰非等边三角形 |
| B、等边三角形 |
| C、直角三角形 |
| D、等腰直角三角形 |
用二分法求方程3x+3x-8=0在区间(1,2)的过程中,设函数f(x)=3x+3x-8,算得f(1)<0,f(1.25)<0,f(1.5)>0,f(1.75)>0,则该方程的根属于( )
| A、(1,1.25) |
| B、(1.25,1.5) |
| C、(1.5,1.75) |
| D、(1.75,2) |