题目内容

设点P是椭圆
x2
25
+
y2
16
=1上的动点,F1为椭圆的左焦点,M(6,4)为定点,则|PM|+|PF1|的最大值是(  )
A、15
B、8+
17
C、10
D、4
6
考点:椭圆的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:由椭圆
x2
25
+
y2
16
=1可得:a2=25,b2=16,c=3.由|PM|+|PF1|=2a+|PM|-|PF2|≤2a+|MF2|,当且仅当三点M、F2、P共线时取等号.
解答: 解:如图所示,
由椭圆
x2
25
+
y2
16
=1可得:a2=25,b2=16.
∴a=5,b=4,c=3.
∴F2(3,0),|MF2|=5.
∴|PM|+|PF1|=2a+|PM|-|PF2|≤2×5+|MF2|=15,
当且仅当三点M、F2、P共线时取等号.
故选:A.
点评:本题考查了椭圆的定义标准方程及其性质、最大值问题的转化为三角形的三边关系,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网