题目内容

已知函数f(x)=x+sinπx-3,则f(
1
2015
)+f(
2
2015
)+f(
3
2015
)+…+f(
4029
2015
)的值为
 
考点:函数的值
专题:函数的性质及应用
分析:由已知得f(x)+f(2-x)=-4,从而f(
1
2015
)+f(
2
2015
)+f(
3
2015
)+…+f(
4029
2015
)=-4×2014+f(1),由此能求出结果.
解答: 解:∵函数f(x)=x+sinπx-3,
∴f(2-x)=2-x+sin(2π-πx)-3=2-x-sinπx-3,
∴f(x)+f(2-x)=-4,
∴f(
1
2015
)+f(
2
2015
)+f(
3
2015
)+…+f(
4029
2015

=-4×2014+f(1)
=-8056+1+sinπ-3
=-8058.
故答案为:-8058.
点评:本题考查函数值的求法,是中档题,解题时要认真审题,解题的关键是推导出f[x+(2-x)]=-4.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网