题目内容

设对任意的正整数m,n,数列{an},{bn}满足3am+n=am•an,且a1=1,bm+n=bn+2m,且b5=13.
(1)求数列{an},{bn}的通项公式;
(2)设cn=
1
bnbn+1
,求数列{cn}的前n项和Sn
(3)设dn=nan,Tn是数列{dn}的前n项和,证明:1≤Tn
9
4
考点:数列与不等式的综合,数列的求和
专题:等差数列与等比数列
分析:(1)取m=1,得an=3an+1
an+1
an
=
1
3
,从而得到an=
1
3n-1
,bn+1=bn+2,由此得到bn=5+(n-1)×2=2n+3.
(2)cn=
1
bnbn+1
=
1
(2n+3)(2n+5)
=
1
2
1
2n+3
-
1
2n+5
),由此利用裂项求法法能求出数列{cn}的前n项和Sn
(3)dn=nan=
n
3n-1
,由此利用错位相减法能证明1≤Tn
9
4
解答: 解:(1)∵对任意的正整数m,n,数列{an}满足3am+n=am•an,且a1=1,
∴取m=1,得an=3an+1
an+1
an
=
1
3

∴an=
1
3n-1

∵对任意的正整数m,n,数列{bn}满足bm+n=bn+2m,且b5=13,
∴当m=1时,bn+1=bn+2,
b4+1=b1+8=13,解得b1=5,
∴{bn}是首项为5,公差为2的等差数列,
∴bn=5+(n-1)×2=2n+3.
(2)cn=
1
bnbn+1
=
1
(2n+3)(2n+5)
=
1
2
1
2n+3
-
1
2n+5
),
∴Sn=
1
2
1
5
-
1
7
+
1
7
-
1
9
+…+
1
2n+3
-
1
2n+5

=
1
2
1
5
-
1
2n+5

=
1
10
-
1
4n+10

(3)dn=nan=
n
3n-1

Tn=
1
30
+
2
3
+
3
32
+…+
n
3n-1
,①
1
3
Tn
=
1
3
+
2
32
+
3
33
+…+
n
3n
,②
①-②,得:
2
3
Tn
=1+
1
3
+
1
32
+…+
1
3n-1
-
n
3n

=
1-
1
3n
1-
1
3
-
n
3n

∴Tn=
9
4
(1-
1
3n
)-
n
2•3n-1
9
4

(Tnmin=T1=
9
4
(1-
1
3
)-
1
2
=1,
∴1≤Tn
9
4
点评:本题考查数列的通项公式和前n项和公式的求法,考查不等式的证明,解题时要注意裂项求和法、错位相减法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网