题目内容
设对任意的正整数m,n,数列{an},{bn}满足3am+n=am•an,且a1=1,bm+n=bn+2m,且b5=13.
(1)求数列{an},{bn}的通项公式;
(2)设cn=
,求数列{cn}的前n项和Sn;
(3)设dn=nan,Tn是数列{dn}的前n项和,证明:1≤Tn<
.
(1)求数列{an},{bn}的通项公式;
(2)设cn=
| 1 |
| bnbn+1 |
(3)设dn=nan,Tn是数列{dn}的前n项和,证明:1≤Tn<
| 9 |
| 4 |
考点:数列与不等式的综合,数列的求和
专题:等差数列与等比数列
分析:(1)取m=1,得an=3an+1,
=
,从而得到an=
,bn+1=bn+2,由此得到bn=5+(n-1)×2=2n+3.
(2)cn=
=
=
(
-
),由此利用裂项求法法能求出数列{cn}的前n项和Sn.
(3)dn=nan=
,由此利用错位相减法能证明1≤Tn<
.
| an+1 |
| an |
| 1 |
| 3 |
| 1 |
| 3n-1 |
(2)cn=
| 1 |
| bnbn+1 |
| 1 |
| (2n+3)(2n+5) |
| 1 |
| 2 |
| 1 |
| 2n+3 |
| 1 |
| 2n+5 |
(3)dn=nan=
| n |
| 3n-1 |
| 9 |
| 4 |
解答:
解:(1)∵对任意的正整数m,n,数列{an}满足3am+n=am•an,且a1=1,
∴取m=1,得an=3an+1,
=
,
∴an=
,
∵对任意的正整数m,n,数列{bn}满足bm+n=bn+2m,且b5=13,
∴当m=1时,bn+1=bn+2,
b4+1=b1+8=13,解得b1=5,
∴{bn}是首项为5,公差为2的等差数列,
∴bn=5+(n-1)×2=2n+3.
(2)cn=
=
=
(
-
),
∴Sn=
(
-
+
-
+…+
-
)
=
(
-
)
=
-
.
(3)dn=nan=
,
Tn=
+
+
+…+
,①
Tn=
+
+
+…+
,②
①-②,得:
Tn=1+
+
+…+
-
=
-
∴Tn=
(1-
)-
<
,
(Tn)min=T1=
(1-
)-
=1,
∴1≤Tn<
.
∴取m=1,得an=3an+1,
| an+1 |
| an |
| 1 |
| 3 |
∴an=
| 1 |
| 3n-1 |
∵对任意的正整数m,n,数列{bn}满足bm+n=bn+2m,且b5=13,
∴当m=1时,bn+1=bn+2,
b4+1=b1+8=13,解得b1=5,
∴{bn}是首项为5,公差为2的等差数列,
∴bn=5+(n-1)×2=2n+3.
(2)cn=
| 1 |
| bnbn+1 |
| 1 |
| (2n+3)(2n+5) |
| 1 |
| 2 |
| 1 |
| 2n+3 |
| 1 |
| 2n+5 |
∴Sn=
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 7 |
| 1 |
| 9 |
| 1 |
| 2n+3 |
| 1 |
| 2n+5 |
=
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 2n+5 |
=
| 1 |
| 10 |
| 1 |
| 4n+10 |
(3)dn=nan=
| n |
| 3n-1 |
Tn=
| 1 |
| 30 |
| 2 |
| 3 |
| 3 |
| 32 |
| n |
| 3n-1 |
| 1 |
| 3 |
| 1 |
| 3 |
| 2 |
| 32 |
| 3 |
| 33 |
| n |
| 3n |
①-②,得:
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 32 |
| 1 |
| 3n-1 |
| n |
| 3n |
=
1-
| ||
1-
|
| n |
| 3n |
∴Tn=
| 9 |
| 4 |
| 1 |
| 3n |
| n |
| 2•3n-1 |
| 9 |
| 4 |
(Tn)min=T1=
| 9 |
| 4 |
| 1 |
| 3 |
| 1 |
| 2 |
∴1≤Tn<
| 9 |
| 4 |
点评:本题考查数列的通项公式和前n项和公式的求法,考查不等式的证明,解题时要注意裂项求和法、错位相减法的合理运用.
练习册系列答案
相关题目
如图是不锈钢保温饭盒的三视图,根据图中数据(单位:cm),则该饭盒的表面积为( )
| A、1100πcm2 |
| B、900πcm2 |
| C、800πcm2 |
| D、600πcm2 |