题目内容
8.已知函数f(x)=(x-1)(x-2)(x-3),且在点(i,f(i))处的切线的斜率为ki(i=1,2,3).则$\frac{1}{k_1}+\frac{1}{k_2}+\frac{1}{k_3}$=0.分析 求导数,可得f′(1)=2,f′(2)=-1,f′(3)=2,即可求出$\frac{1}{k_1}+\frac{1}{k_2}+\frac{1}{k_3}$.
解答 解:∵函数f(x)=(x-1)(x-2)(x-3),
∴f′(x)=(x-2)(x-3)+(x-1)(x-2)+(x-1)(x-3),
∴f′(1)=2,f′(2)=-1,f′(3)=2,
∴$\frac{1}{k_1}+\frac{1}{k_2}+\frac{1}{k_3}$=0
故答案为:0.
点评 本题考查导数知识的运用,考查导数的几何意义,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目
3.已知不等式组$\left\{\begin{array}{l}{x+y-2\sqrt{2}≥0}\\{x≤2\sqrt{2}}\\{y≤2\sqrt{2}}\end{array}\right.$表示平面区域Ω,过区域Ω中的任意一个点P,作圆x2+y2=1的两条切线且切点分别为A,B,当△PAB的面积最小时,cos∠APB的值为( )
| A. | $\frac{7}{8}$ | B. | $\frac{1}{2}$ | C. | $\frac{3}{4}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
13.体积为$\frac{4}{3}π$的球O放置在棱长为4的正方体ABCD-A1B1C1D1上,且与上表面A1B1C1D1相切,切点为该表面的中心,则四棱锥O-ABCD的外接球的半径为( )
| A. | $\frac{10}{3}$ | B. | $\frac{33}{10}$ | C. | $\frac{23}{6}$ | D. | $\frac{41}{12}$ |
20.某企业有4个分厂,新培训了一批6名技术人员,将这6名技术人员分配到各分厂,要求每个分厂至少1人,则不同的分配方案种数为( )
| A. | 1080 | B. | 480 | C. | 1560 | D. | 300 |
18.在区间(0,1)内任取两个数x,y,则满足y≥2x概率是( )
| A. | $\frac{3}{4}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |