ÌâÄ¿ÄÚÈÝ
4£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+cos¦Õ}\\{y=sin¦Õ}\end{array}\right.$£¨¦ÕΪ²ÎÊý£©£¬ÒÔÔµãOΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñ=sin¦È£®£¨¢ñ£©ÇóÇúÏßC1µÄ¼«×ø±ê·½³Ì¼°ÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÒÑÖªÇúÏßC1£¬C2½»ÓÚO£¬AÁ½µã£¬¹ýOµãÇÒ´¹Ö±ÓÚOAµÄÖ±ÏßÓëÇúÏßC1£¬C2½»ÓÚM£¬NÁ½µã£¬Çó|MN|µÄÖµ£®
·ÖÎö £¨I£©ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+cos¦Õ}\\{y=sin¦Õ}\end{array}\right.$£¨¦ÕΪ²ÎÊý£©£¬ÀûÓÃÆ½·½¹ØÏµ¿ÉµÃÆÕͨ·½³Ì£®ÀûÓû¥»¯¹«Ê½¿ÉµÃ£ºÇúÏßC1µÄ¼«×ø±ê·½³Ì£®ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñ=sin¦È£¬¿ÉµÃ£º¦Ñ2=¦Ñsin¦È£¬ÀûÓû¥»¯¹«Ê½¿ÉµÃ£ºÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£®
£¨II£©ÁªÁ¢$\left\{\begin{array}{l}{¦Ñ=2cos¦È}\\{¦Ñ=sin¦È}\end{array}\right.$£¬¿ÉµÃtan¦È=2£¬ÉèµãAµÄ¼«½ÇΪ¦È£¬Ôòtan¦È=2£¬¿ÉµÃsin¦È=$\frac{2\sqrt{5}}{5}$£¬cos¦È=$\frac{\sqrt{5}}{5}$£¬ÔòM$£¨{¦Ñ}_{1}£¬¦È-\frac{¦Ð}{2}£©$£¬´úÈë¦Ñ=2cos¦È£¬¿ÉµÃ£º¦Ñ1£®N$£¨{¦Ñ}_{2}£¬¦È+\frac{¦Ð}{2}£©$£¬´úÈë¦Ñ=sin¦È£¬¿ÉµÃ£º¦Ñ2£®¿ÉµÃ£º|MN|=¦Ñ1+¦Ñ2£®
½â´ð ½â£º£¨I£©ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+cos¦Õ}\\{y=sin¦Õ}\end{array}\right.$£¨¦ÕΪ²ÎÊý£©£¬
ÀûÓÃÆ½·½¹ØÏµ¿ÉµÃ£º£¨x-1£©2+y2=1£¬»¯Îªx2+y2-2x=0£®
ÀûÓû¥»¯¹«Ê½¿ÉµÃ£ºÇúÏßC1µÄ¼«×ø±ê·½³ÌΪ¦Ñ2-2¦Ñcos¦È=0£¬¼´¦Ñ=2cos¦È£®
ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñ=sin¦È£¬¿ÉµÃ£º¦Ñ2=¦Ñsin¦È£¬¿ÉµÃ£ºÇúÏßC2µÄÖ±½Ç×ø±ê·½³ÌΪx2+y2=y£®
£¨II£©ÁªÁ¢$\left\{\begin{array}{l}{¦Ñ=2cos¦È}\\{¦Ñ=sin¦È}\end{array}\right.$£¬¿ÉµÃtan¦È=2£¬ÉèµãAµÄ¼«½ÇΪ¦È£¬Ôòtan¦È=2£¬¿ÉµÃsin¦È=$\frac{2\sqrt{5}}{5}$£¬cos¦È=$\frac{\sqrt{5}}{5}$£¬
ÔòM$£¨{¦Ñ}_{1}£¬¦È-\frac{¦Ð}{2}£©$£¬´úÈë¦Ñ=2cos¦È£¬¿ÉµÃ£º¦Ñ1=2cos$£¨¦È-\frac{¦Ð}{2}£©$=2sin¦È=$\frac{4\sqrt{5}}{5}$£®
N$£¨{¦Ñ}_{2}£¬¦È+\frac{¦Ð}{2}£©$£¬´úÈë¦Ñ=sin¦È£¬¿ÉµÃ£º¦Ñ2=sin$£¨¦È+\frac{¦Ð}{2}£©$=cos¦È=$\frac{\sqrt{5}}{5}$£®
¿ÉµÃ£º|MN|=¦Ñ1+¦Ñ2=$\sqrt{5}$£®
µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢¼«×ø±ê·½³ÌÓëÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯¡¢Ô²ÏཻÏÒ³¤ÎÊÌ⣬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | 4 | B£® | -6 | C£® | -10 | D£® | 10 |
| A£® | h2 | B£® | $\frac{3}{2}$h2 | C£® | $\sqrt{3}$h2 | D£® | 2h2 |