题目内容

9.已知α为第三象限角,$f(α)=\frac{{sin({α-\frac{π}{2}})cos({\frac{3π}{2}+α})tan({π-α})}}{{tan({-π-α})sin({-π-α})}}$
(1)化简f(α);
(2)若$cos({α-\frac{3π}{2}})=\frac{1}{5}$,求f(α)的值.

分析 (1)利用三角函数的诱导公式进行化简,特别注意符号;
(2)首先球场sinα,利用平方关系求出余弦值,利用(1)化简的解析式可得所求.

解答 解:(1)α为第三象限角,$f(α)=\frac{{sin({α-\frac{π}{2}})cos({\frac{3π}{2}+α})tan({π-α})}}{{tan({-π-α})sin({-π-α})}}$=$\frac{cosαsinαtanα}{-tanαsinα}$=-cosα;
(2)若$cos({α-\frac{3π}{2}})=\frac{1}{5}$,则sinα=$-\frac{1}{5}$,α是第三象限角,cosα=$-\frac{2\sqrt{6}}{5}$,所以f(α)=$-\frac{2\sqrt{6}}{5}$.

点评 本题考查了三角函数式的化简与求值;熟练运用诱导公式是正确解答本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网