ÌâÄ¿ÄÚÈÝ
ÍÖÔ²x2+
=1¶ÌÖáµÄ×óÓÒÁ½¸ö¶Ëµã·Ö±ðΪA£¬B£¬Ö±Ïßl¹ý¶¨µã£¨0£¬1£©½»ÍÖÔ²ÓÚÁ½µãC£¬D£®
£¨1£©ÈôlÓëxÖá¡¢yÖá·Ö±ð½»ÓÚÁ½µãE£¬F£¬
=
£¬ÇóÖ±ÏßlµÄ·½³Ì£º
£¨2£©ÉèÖ±ÏßAD£¬CBµÄбÂÊ·Ö±ðΪk1k2£¬Èôk1£ºk2=2£º1£¬ÇókµÄÖµ£®
£¨3£©£¨Àí£©ÉèC£¨x1£¬y1£©£¬D£¨x2£¬y2£©£¬·Ö±ð¹ýC¡¢D×÷бÂÊΪ-
ºÍ-
Á½ÌõÖ±Ïßl1ºÍl2£®¼Çl1ºÍl2µÄ½»µãΪM£¬Çó¡÷MCDÃæ»ýµÄ×îСֵ£®
| y2 |
| 4 |
£¨1£©ÈôlÓëxÖá¡¢yÖá·Ö±ð½»ÓÚÁ½µãE£¬F£¬
| CE |
| FD |
£¨2£©ÉèÖ±ÏßAD£¬CBµÄбÂÊ·Ö±ðΪk1k2£¬Èôk1£ºk2=2£º1£¬ÇókµÄÖµ£®
£¨3£©£¨Àí£©ÉèC£¨x1£¬y1£©£¬D£¨x2£¬y2£©£¬·Ö±ð¹ýC¡¢D×÷бÂÊΪ-
| 4x1 |
| y1 |
| 4x2 |
| y2 |
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ
רÌ⣺×ÛºÏÌâ,Ô²×¶ÇúÏߵ͍Òå¡¢ÐÔÖÊÓë·½³Ì
·ÖÎö£º£¨1£©ÉèC£¨x1£¬y1£©£¬D£¨x2£¬y2£©£¬Ö±Ïß´úÈëÍÖÔ²·½³ÌµÃ£¨4+k2£©x2+2kx-3=0£¬ÔÙÓÉÅбðʽºÍ¸ùÓëϵÊýµÄ¹ØÏµ¿ÉÍÆµ¼³öËùÇóÖ±ÏßlµÄ·½³ÌΪ2x-y+1=0»ò2x+y-1=0£®
£¨2£©ÓÉÌâÉèÖªy12=4£¨1-x12£©£¬y22=4£¨1-x22£©£¬ÓÉ´ËÍÆ³ö3x1x2+5£¨x1+x2£©+3=0£¬ËùÒÔ3k2-10k+3=0£¬ÓÉ´Ë¿ÉÍÆµ¼³ökµÄÖµ£®
£¨3£©Çó³öMµÄ¹ì¼£·½³Ì£¬½áºÏͼÐΣ¬¿ÉµÃ¡÷MCDÃæ»ýµÄ×îСֵ£®
£¨2£©ÓÉÌâÉèÖªy12=4£¨1-x12£©£¬y22=4£¨1-x22£©£¬ÓÉ´ËÍÆ³ö3x1x2+5£¨x1+x2£©+3=0£¬ËùÒÔ3k2-10k+3=0£¬ÓÉ´Ë¿ÉÍÆµ¼³ökµÄÖµ£®
£¨3£©Çó³öMµÄ¹ì¼£·½³Ì£¬½áºÏͼÐΣ¬¿ÉµÃ¡÷MCDÃæ»ýµÄ×îСֵ£®
½â´ð£º
½â£º£¨1£©ÉèC£¨x1£¬y1£©£¬D£¨x2£¬y2£©£¬Ö±Ïßl£ºy=kx+1
´úÈëÍÖÔ²·½³ÌµÃ£¨4+k2£©x2+2kx-3=0£¬
¡÷=4k2+12£¨4+k2£©=16k2+48£¬
x1+x2=-
£¬x1x2=-
ÓÉÒÑÖªE£¨-
£¬0£©£¬F£¨0£¬1£©£¬
ÓÖ
=
£¬ËùÒÔ£¨-
-x1£¬-y1£©=£¨x2£¬y2-1£©£¬
ËùÒÔ-
-x1=x2£¬¼´x1+x2=-
ËùÒÔ-
=-
£¬½âµÃk=¡À2£¬·ûºÏÌâÒ⣬
ËùÒÔ£¬ËùÇóÖ±ÏßlµÄ·½³ÌΪ2x-y+1=0»ò2x+y-1=0£®
£¨2£©k1=
£¬k2=
£¬k1£ºk2=2£º1£¬
ËùÒÔ
=2£¬
ƽ·½£¬½áºÏx12+
=1£¬ËùÒÔy12=4£¨1-x12£©£¬Í¬Àíy22=4£¨1-x22£©£¬´úÈëÉÏʽ£¬
¼ÆËãµÃ
=4£¬¼´3x1x2+5£¨x1+x2£©+3=0£¬
ËùÒÔ3k2-10k+3=0£¬½âµÃk=3»òk=
£¬
ÒòΪ
=2£¬x1£¬x2¡Ê£¨-1£¬1£©£¬ËùÒÔy1£¬y2ÒìºÅ£¬¹ÊÉáÈ¥k=
£¬
ËùÒÔk=3£®
£¨3£©ÉèC£¨x1£¬y1£©£¬D£¨x2£¬y2£©£¬·Ö±ð¹ýC¡¢D×÷бÂÊΪ-
ºÍ-
Á½ÌõÖ±Ïßl1ºÍl2£¬·½³ÌΪ4x1x+y1y-4=0£¬4x2x+y2y-4=0£¬¡àMµÄ¹ì¼£·½³ÌΪy=4£¬
ÓÉy=1¿ÉµÃx=¡À
£¬¡àCD¡ÎxÖáʱ£¬¡÷MCDÃæ»ýµÄ×îСֵΪ
¡Á
¡Á3=
£®
´úÈëÍÖÔ²·½³ÌµÃ£¨4+k2£©x2+2kx-3=0£¬
¡÷=4k2+12£¨4+k2£©=16k2+48£¬
x1+x2=-
| 2k |
| 4+k2 |
| 3 |
| 4+k2 |
ÓÉÒÑÖªE£¨-
| 1 |
| k |
ÓÖ
| CE |
| FD |
| 1 |
| k |
ËùÒÔ-
| 1 |
| k |
| 1 |
| k |
ËùÒÔ-
| 2k |
| 4+k2 |
| 1 |
| k |
ËùÒÔ£¬ËùÇóÖ±ÏßlµÄ·½³ÌΪ2x-y+1=0»ò2x+y-1=0£®
£¨2£©k1=
| y2 |
| x2+1 |
| y1 |
| x1-1 |
ËùÒÔ
| y2(x1-1) |
| y1(x2+1) |
ƽ·½£¬½áºÏx12+
| y12 |
| 4 |
¼ÆËãµÃ
| (1-x2)(1-x1) |
| (1+x1)(1+x2) |
ËùÒÔ3k2-10k+3=0£¬½âµÃk=3»òk=
| 1 |
| 3 |
ÒòΪ
| y2(x1-1) |
| y1(x2+1) |
| 1 |
| 3 |
ËùÒÔk=3£®
£¨3£©ÉèC£¨x1£¬y1£©£¬D£¨x2£¬y2£©£¬·Ö±ð¹ýC¡¢D×÷бÂÊΪ-
| 4x1 |
| y1 |
| 4x2 |
| y2 |
ÓÉy=1¿ÉµÃx=¡À
| ||
| 2 |
| 1 |
| 2 |
| 3 |
3
| ||
| 2 |
µãÆÀ£º±¾Ì⿼²éÔ²×¶ÇúÏßµÄ×ÛºÏÔËÓã¬ÊÇÀúÄê¸ß¿¼ÌâµÄÖØÒªÌâÐÍÖ®Ò»£¬½âÌâʱҪעÒâ¼ÆËãÄÜÁ¦µÄÅàÑø£¬×¢Òâ»ýÀÛ½âÌâ·½·¨£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÒÑ֪ȫ¼¯U={0£¬1£¬2£¬3£¬4}£¬M={0£¬1£¬2}£¬N={2£¬3}£¬Ôò£¨∁UM£©¡ÉN=£¨¡¡¡¡£©
| A¡¢{2} |
| B¡¢{2£¬3£¬4} |
| C¡¢{3} |
| D¡¢{0£¬1£¬2£¬3£¬4} |
ÒÑÖªÕýÏîÊýÁÐ{an}Âú×ãlog3an+1=log3an+1£¨n¡ÊN*£©£¬ÇÒa1=1£¬ÔòÊýÁÐ{log3an}µÄǰnÏîºÍÊÇ£¨¡¡¡¡£©
A¡¢
| ||
| B¡¢n-1 | ||
C¡¢
| ||
| D¡¢n |